A Comprehensive Review of Nanoparticle Incorporation in Construction and Architecture Materials: Impacts on Properties, Performance, and Sustainability

Document Type : Review Article

Authors

1 Capital Construction Department, Nanjing University of Information Science and Technology, Nanjing, 210044, P.R. CHINA

2 Lakehead University, Lakehead, CANADA

3 Young Researcher and Elite Club, Isfahan Branch, Islamic Azad University, Isfahan, I.R. IRAN

4 epartment of Civil Engineering, K.N. Toosi University of Technology, Tehran, I.R. IRAN

Abstract

Over the past two decades, there is a rapid growth of research on nanotechnology in construction materials. This study presents a timely and comprehensive review that focuses on investigating the effects of incorporating various nanoparticles into cementitious, polymeric, and composite materials commonly used in the construction and architecture sectors. The primary objective is to critically analyze the potential benefits and limitations associated with the addition of nanoparticles, particularly in enhancing mechanical performance, durability, functionality, and sustainability. The study methodology involves an extensive analysis of published literature on nanoparticles applied in construction materials. The impact of nanomaterials on properties, including compressive strength, fracture toughness, stiffness, self-sensing capability, resistance to environmental degradation, antimicrobial effects, and recyclability is thoroughly examined. The findings reveal significant progress in demonstrating the capabilities of nanomaterials in tailoring the properties of cementitious composites, coatings, and plastics. However, challenges persist in such areas as dispersion, agglomeration, predicting long-term performance, toxicity evaluation and feasibility assessment. Recommendations are provided, which focus on evaluating durability under in-service conditions, developing sustainable manufacturing methods, and establishing standardized protocols for material preparation and testing. The outcomes emphasize the need for a holistic approach that considers technical, environmental, economic, and social factors to facilitate the widespread adoption of nano-engineered materials. This comprehensive review serves as a valuable reference for researchers, engineers, architects, and construction professionals interested in understanding the current state-of-the-art, limitations, and future outlook on the integration of nanoparticles in construction applications.

Keywords

Main Subjects


[1] Abdellahi M., Jabbarzare S., Ghayour H., Khandan A., Thermal and X-Ray Analyses of Aluminum–Titanium Nanocomposite Powder, Journal of Thermal Analysis and Calorimetry, 131: 853-863 (2018).
[2] Aghdam H.A., Sanatizadeh E., Motififard M., Aghadavoudi F., Saber-Samandari S., Esmaeili S., Sheikhbahaei E., Safari M., Khandan A., Effect of Calcium Silicate Nanoparticle on Surface Feature of Calcium Phosphates Hybrid Bio-Nanocomposite Using for Bone Substitute Application, Powder Technology, 361: 917-929 (2020).
[3] Farazin A., Sahmani S., Soleimani M., Kolooshani A., Saber-Samandari S., Khandan A., Effect of Hexagonal Structure Nanoparticles on the Morphological Performance of the Ceramic Scaffold Using Analytical Oscillation Response, Ceramics International, 47(13): 18339-18350 (2021).
[4] Abramkin D.S., Petrushkov M.O., Bogomolov D.B., Emelyanov E.A., Yesin M.Y., Vasev A.V., Bloshkin A.A., Koptev E.S., Putyato M.A., Atuchin V.V., Structural Properties and Energy Spectrum of Novel GaSb/AlP Self-Assembled Quantum Dots, Nanomaterials, 13(5): 910 (2023).
[5] Patel C., Mandal B., Jadhav R.G., Ghosh T., Dubey M., Das A.K., Htay M.T., Atuchin V.V., Mukherjee S., S, N co-Doped Carbon Dot-Functionalized WO3 Nanostructures for NO2 and H2S Detection, ACS Applied Nano Materials, 5(2): 2492-2500 (2022).
[6] Sylenko P., Shlapak A., Petrovska S., Khyzhun O., Solonin Y., Atuchin V., Direct Nitridation Synthesis and Characterization of Si 3 N 4 Nanofibers, Research on Chemical Intermediates, 41: 10037-10048 (2015).
[7] Ahmadi M., Jahanmardi R., Mohammadizade M., Preparation of PMMA/MWNTs Nanocomposite Microcellular Foams by In-situ Generation of Supercritical Carbon Dioxide, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 35(2): 63-72 (2016).
[8] Fekri M.H., Tousi F., Heydari R., Razavi Mehr M., Rashidipour M., Synthesis of Magnetic Novel Hybrid Nanocomposite (Fe3O4@ SiO2/Activated Carbon (by a Green Method and Evaluation of its Antibacterial Potential, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(3): 767-776 (2022).
[10] Khandan A., Karamian E., Bonakdarchian M., Mechanochemical Synthesis Evaluation of Nanocrystalline Bone-Derived Bioceramic Powder Using for Bone Tissue Engineering, Dental Hypotheses, 5(4): 155 (2014).
[11] Khandan A., Ozada N., Saber-Samandari S., Nejad M.G., On the Mechanical and Biological Properties of Bredigite-Magnetite (Ca7MgSi4O16-Fe3O4) Nanocomposite Scaffolds, Ceramics International, 44(3): 3141-3148 (2018).
[12] Ekrami-Kakhki M.-S., Pouyamanesh S., Abbasi S., Heidari G., Beitollahi H., Enhanced Electrocatalytic Performance of Pt Nanoparticles Incorporated CeO2 Nanorods on Polyaniline-Chitosan Support for Methanol Electrooxidation (Experimental and Statistical Analysis), Journal of Cluster Science, 32: 363–378 (2021)
[13] Abdellahi M., Najafinezhad A., Ghayour H., Saber-Samandari S., Khandan A., Preparing Diopside Nanoparticle Scaffolds via Space Holder Method: Simulation of the Compressive Strength and Porosity, Journal of the Mechanical Behavior of Biomedical Materials, 72: 171-181 (2017).
[14] Barbaz-Isfahani R., Saber-Samandari S., Salehi M., Novel Electrosprayed Enhanced Microcapsules with Different Nanoparticles Containing Healing Agents in a Single Multicore Microcapsule, International Journal of Biological Macromolecules, 200: 532-542 (2022).
[15] Chehrazi M., Moghadas B.K., Experimental Study of the Effect of Single Walled Carbon Nanotube/Water Nanofluid on the Performance of a Two-Phase Closed Thermosyphon, Journal of the Serbian Chemical Society, 86(3): 313-326 (2021).
[16] Khandan A., Ozada N., Karamian E., Novel Microstructure Mechanical Activated Nano Composites for Tissue Engineering Applications, Journal of Bioengineering & Biomedical Science, 5(1): 1 (2015).
[17] Li Z., Liu X., Li S., An Electrochemical Sensor Based on Multi-Walled Carbon Nanotubes Functionalized with 2-Picolinyl Hydrazide for Electrochemical Detection of Pb (II) Ions, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(5): 1528-1537 (2022)
[18] Hanus M.J., Harris A.T., Nanotechnology Innovations for the Construction Industry, Progress in Materials Science, 58(7): 1056-1102 (2013).
[19] Kamyab Moghadas B., Azadi M., Fabrication of Nanocomposite Foam by Supercritical CO2 Technique for Application in Tissue Engineering, Journal of Tissues and Materials, 2(1): 23-32 (2019).
[20] Karamian E., Abdellahi M., Khandan A., Abdellah S., Introducing the Fluorine Doped Natural Hydroxyapatite-Titania Nanobiocomposite Ceramic, Journal of Alloys and Compounds, 679:  375-383 (2016).
[21] Khandan A., Abdellahi M., Barenji R.V., Ozada N., Karamian E., Introducing Natural Hydroxyapatite-Diopside (NHA-Di) Nano-Bioceramic Coating, Ceramics International, 41(9): 12355-12363 (2015).
[22] Maghsoudlou M.A., Nassireslami E., Saber-Samandari S., Khandan A., Bone Regeneration Using Bio-Nanocomposite Tissue Reinforced with Bioactive Nanoparticles for Femoral Defect Applications in Medicine, Avicenna Journal of Medical Biotechnology,12(2): 68 (2020).
[23] Nassireslami E., Motififard M., Kamyab Moghadas B., Hami Z., Jasemi A., Lachiyani A., Shokrani Foroushani R., Saber-Samandari S., Khandan A., Potential of Magnetite Nanoparticles with Biopolymers Loaded with Gentamicin Drug for Bone Cancer Treatment, Journal of Nanoanalysis, 8(3): 188-198 (2021).
[24] Anwar H., Abbas B., Mustafa A., Anjum F., Ahmad F., Naz I., Investigation of Doping Effect on Structural, Optical, Antibacterial, and Toxicity Properties of Iron Doped Copper Oxide Nanostructures Prepared by Co-Precipitation Route, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(3): 777-786 (2022).
[25] Karamian E., Khandan A., Kalantar Motamedi M.R., Mirmohammadi H., Surface Characteristics and Bioactivity of a Novel Natural HA/Zircon Nanocomposite Coated on Dental Implants, BioMed Research International, 2014 (2014).
[26] Maghsoudlou M.A., Isfahani R.B., Saber-Samandari S., Sadighi M., Effect of Interphase, Curvature and Agglomeration of SWCNTs on Mechanical Properties of Polymer-Based Nanocomposites: Experimental and Numerical Investigations, Composites Part B: Engineering, 175: 107119 (2019).
[27] Qin W., Kolooshani A., Kolahdooz A., Saber-Samandari S., Khazaei S., Khandan A., Ren F., Toghraie D., Coating the Magnesium Implants with Reinforced Nanocomposite Nanoparticles for use in Orthopedic Applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 621: 126581 (2021).
[28] Sahmani S., Shahali M., Ghadiri Nejad M., Khandan A., Aghdam M., Saber-Samandari S., Effect of Copper Oxide Nanoparticles on Electrical Conductivity and Cell Viability of Calcium Phosphate Scaffolds with Improved Mechanical Strength for Bone Tissue Engineering, The European Physical Journal Plus, 134: 1-11 (2019).
[29] Barbaz-Isfahani R., Khalvandi A., Tran T.M.N., Kamarian S., Saber-Samandari S., Song J.-i., Synergistic Effects of Egg Shell Powder and Halloysite Clay Nanotubes on the Thermal and Mechanical Properties of Abacá/Polypropylene Composites, Industrial Crops and Products, 205: 117498 (2023).
[30] Rahmani F., Barbaz-Isfahani R., Saber-Samandari S., Salehi M., Experimental and Analytical Investigation on Forced and Free Vibration of Sandwich Structures with Reinforced Composite faces in an Acidic Environment, Heliyon, 9(10): (2023) e20864.
[31] Sanchez F., Sobolev K., Nanotechnology in Concrete–A Review, Construction and Building Materials, 24(11) 2060-2071 (2010).
[32] Kazemi A., Abdellahi M., Khajeh-Sharafabadi A., Khandan A., Ozada N., Study of in Vitro Bioactivity and Mechanical Properties of Diopside Nano-Bioceramic Synthesized by a Facile Method Using Eggshell as Raw Material, Materials Science and Engineering: C, 71: 604-610 (2017).
[33] Khalil R.A., Al-Rasheed M.S., Treatment of the Local Construction Gypsum Weak Points by the Addition of 4% w/w White Portland Cement, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(12): 4296-4306 (2022).
[34] Safaei M., Abedinzadeh R., Khandan A., Barbaz-Isfahani R., Toghraie D., Synergistic Effect of Graphene Nanosheets and Copper oxide nanoparticles on Mechanical and Thermal Properties of Composites: Experimental and Simulation Investigations, Materials Science and Engineering: B, 289: 116248 (2023).
[35] Sahmani S., Khandan A., Saber-Samandari S., Aghdam M., Nonlinear Bending and Instability Analysis of Bioceramics Composed with Magnetite Nanoparticles: Fabrication, Characterization, and Simulation, Ceramics International, 44(8): 9540-9549 (2018).
[36] Ullah A., Mushtaq A., Ahmed Q.R., Ali Z.U., Rashid A., Afshan S., Waseem A., Aslam S., Zamzam Z., Experimental Analysis of Polymer-Coated Aggregate in Comparison to Ordinary Road Material, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(8): 2805-2819 (2022).
[37] Bameri I., Saffari J., M Ekrami-Kakhki.-S., Baniyaghoob S., Pt Nanoparticles Incorporated Znfe2o4 Nanoparticles Supported on Hollow Poly (Aniline-Co-Pyrrole)/Chitosan as a Novel Catalyst for Methanol Oxidation, Journal of Cluster Science, 34(4): 1819-1829 (2023).
[38] Jo B.-W., Kim C.-H., Tae G.-h., Park J.-B., Characteristics of Cement Mortar with Nano-SiO2 Particles, Construction and Building Materials, 21(6): 1351-1355 (2007).
[39] Li Z., Wang H., He S., Lu Y., Wang M., Investigations on the Preparation and Mechanical Properties of the Nano-Alumina Reinforced Cement Composite, Materials Letters, 60(3): (2006) 356-359.
[40] Ayatollahi M., Barbaz Isfahani R., Moghimi Monfared R., Effects of Multi-Walled Carbon Nanotube and Nanosilica on Tensile Properties of Woven Carbon Fabric-Reinforced Epoxy Composites Fabricated Using VARIM, Journal of Composite Materials, 51(30): 4177-4188 (2017).
[41] Monfared R.M., Ayatollahi M.R., Isfahani R.B., Synergistic Effects of Hybrid MWCNT/Nanosilica on the Tensile and Tribological Properties of Woven Carbon Fabric Epoxy Composites, Theoretical and Applied Fracture Mechanics, 96: 272-284 (2018).
[42] Sun L., Liang T., Zhang C., Chen J., The Rheological Performance of Shear-Thickening Fluids Based on Carbon Fiber and Silica Nanocomposite, Physics of Fluids, 35(3): (2023).
[43] Konsta-Gdoutos M.S., Metaxa Z.S., Shah S.P., Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials, Cement and Concrete Research, 40(7) 1052-1059  (2010).
[44] Nochaiya T., Chaipanich A., Behavior of Multi-Walled Carbon Nanotubes on the Porosity and Microstructure of Cement-Based Materials, Applied Surface Science, 257(6): 1941-1945 (2011).
[45] Qian W.-M., Vahid M.H., Sun Y.-L., Heidari A., Barbaz-Isfahani R., Saber-Samandari S., Khandan A., Toghraie D., investigation on the Effect of Functionalization of Single-Walled Carbon Nanotubes on the Mechanical Properties of Epoxy Glass Composites: Experimental and Molecular Dynamics Simulation, journal of materials research and technology, 12: 1931-1945 (2021).
[46] Rahmani F., Barbaz-Isfahani R., Saber-Samandari S., Salehi M., Effect of Corrosive Environment on Mechanical Properties of Polymer-Based Nanocomposite: Analytical and Experimental Study, Materials Today Communications, 36: 106544 (2023).
[47] Sahmani S., Saber-Samandari S., Aghdam M., Khandan A., Microstructural Properties of Novel Nanocomposite Material Based on Hydroxyapatite and Carbon Nanotubes: Fabrication and Nonlinear Instability Simulation, Journal of Nanostructure in Chemistry, 1-22 (2022).
[48] Lv S., Ma Y., Qiu C., Sun T., Liu J., Zhou Q., Effect of Graphene Oxide Nanosheets of Microstructure and Mechanical Properties of Cement Composites, Construction and Building Materials, 49: 121-127 (2013).
[49] Anwar H., Amin A.B., Iqbal M., Haseeb M., Hanif S., Khalid M., Sajid H., Abbas B., Hassan M.U., Dissanayake M., Investigation of Evolution in the Synthesis of Graphene Oxide and Reduced Graphene Oxide, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(12): 3981-3988 (2022).
[50] Banu E.T., Ayça D., An Alternative Pre-Treatment Sterilization Solution Synthesis Utilizing Boric Acid Doped Graphene Oxide, Iranian Journal of Chemistry and Chemical Engineering  (IJCCE), 41(11): 3718-3725 (2022).
[51] Foroutan S., Hashemian M., Khosravi M., Nejad M.G., Asefnejad A., Saber-Samandari S., Khandan A., A Porous Sodium Alginate-CaSiO3 Polymer Reinforced with Graphene Nanosheet: Fabrication and Optimality Analysis, Fibers and Polymers, 22: 540-549 (2021).
[52] Moghadas B.K., Akbarzadeh A., Azadi M., Aghili A., Rad A.S., Hallajian S., The Morphological Properties and Biocompatibility Studies of Synthesized Nanocomposite foam from Modified Polyethersulfone/Graphene Oxide Using Supercritical CO2, Journal of Macromolecular Science, Part A., 57(6): 451-460 (2020).
[53] Cioffi N., Torsi L., Ditaranto N., Tantillo G., Ghibelli L., Sabbatini L., Bleve-Zacheo T., D'Alessio M., Zambonin Traversa P.G., E., Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties, Chemistry of Materials, 17(21) 5255-5262 (2005).
[54] Chandra A., Yadav R.K., Shakya V.K., Luqman S., Yadav S., Antimicrobial Efficacy of Silver Nanoparticles with and without Different Antimicrobial Agents Against Enterococcus faecalis and Candida Albicans, Dental Hypotheses, 8(4): 94 (2017).
[55] Edraki M., Sheydaei M., Vessally E., Salmasifar A., Enhanced Mechanical, Anticorrosion and Antimicrobial Properties of Epoxy Coating via Pine Pollen Modified clay Incorporation, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 42(9): 2775-2786 (2023).
[56] Eswaran A., Subramanian R., Sivasubramanian G., Gurusamy A., Chitosan Nanoparticle-Montmorillonite-Titanium dioxide Nanocomposites: Synthesis, Characterization and Antimicrobial Activity, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 42(1): 19-26 (2022).
[57] Mahmoudi Alashti T., Motakef-Kazemi N., Shojaosadati S.A., In Situ Production and Deposition of Nanosized Zinc Oxide on Cotton Fabric, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(1): 1-9 (2021).
[58] Al-Dahash G., Mubder Khilkala W., Abd Alwahid S.N., Preparation and Characterization of ZnO Nanoparticles by Laser Ablation in NaOH Aqueous Solution, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(1): 11 16 (2018).
[59] Dyshlyuk L., Babich O., Ivanova S., Vasilchenco N., Atuchin V., Korolkov I., Russakov D., Prosekov A., Antimicrobial Potential of ZnO, TiO2 and SiO2 Nanoparticles in Protecting Building Materials from Biodegradation, International Biodeterioration & Biodegradation, 146: 104821 (2020).
[60] Hüsken G., Hunger M., Brouwers H., Experimental Study of Photocatalytic Concrete Products for Air Purification, Building and environment, 4(12): 2463-2474 (2009).
[61] Sahmani S., Saber-Samandari S., Khandan A., Aghdam M., Nonlinear Resonance Investigation of Nanoclay Based Bio-Nanocomposite Scaffolds with Enhanced Properties for Bone Substitute Applications, Journal of Alloys and Compounds, 773: 636-653 (2019).
[62] Salmani M.M., Hashemian M., Khandan A., Therapeutic Effect of Magnetic Nanoparticles on Calcium Silicate Bioceramic in Alternating Field for Biomedical Application, Ceramics International, 46(17): 27299-27307 (2020).
[63] Salmani M.M., Hashemian M., Yekta H.J., Nejad M.G., Saber-Samandari S., Khandan A., Synergic Effects of Magnetic Nanoparticles on Hyperthermia-Based Therapy and Controlled Drug Delivery for Bone Substitute Application, Journal of Superconductivity and Novel Magnetism, 33: 2809-2820 (2020).
[64] Shokuhi Rad A., Zareyee D., Pouralijan Foukolaei V., Kamyab Moghadas B., Peyravi M., Study on the Electronic Structure of Al12N12 and Al12P12 Fullerene-Like Nano-Clusters Upon Adsorption of CH3F and CH3Cl, Molecular Physics, 114(21): 3143-3149 (2016).
[65] Tamjidi S., Esmaeili H., Moghadas B.K., Performance of Functionalized Magnetic Nanocatalysts and Feedstocks on Biodiesel Production: A Review Study, Journal of Cleaner Production, 305: 127200 (2021).
[67] Signorini C., Sola A., Nobili A., Hierarchical Composite coating for Enhancing the Tensile Behaviour of Textile-Reinforced Mortar (TRM), Cement and Concrete Composites, 140: 105082 (2023).
[68] Salehizadeh P., Taghizadeh M., Emam-Djomeh Z., Effect of Parameters on Fiber Diameters and the Morphology of Hybrid Electrospun Cellulose Acetate/Chitosan/Poly (Ethylene Oxide) Nanofibers, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(8): 2537-2547 (2022).
[69] Keskin S., Kızılel S., Biomedical Applications of Metal Organic Frameworks, Industrial & Engineering Chemistry Research, 50(4): 1799-1812 (2011).
[70] Saxena M., Pappu A., Sharma A., Haque R., Wankhede S., Composite Materials from Natural Resources: Recent Trends and Future Potentials, Intech Open, 2011.
[71] Qing Y., Zenan Z., Deyu K., Rongshen C., Influence of Nano-SiO2 Addition on Properties of Hardened Cement Paste as Compared with Silica Fume, Construction and Building Materials, 21(3): 539-545 (2007).
[72] Almasi D., Abbasi K., Sultana N., Lau W.J., Study on TiO2 Nanoparticles Distribution in Electrospun Polysulfone/TiO2 Composite Nanofiber, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(2): 49-53 (2017).
[73] Azin Z., Pourghobadi Z., Electrochemical Sensor Based on Nanocomposite of Multi-Walled Carbon Nano-Tubes (MWCNTs)/TiO2/Carbon Ionic Liquid Electrode Analysis of Acetaminophen in Pharmaceutical Formulations, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(4): 1030-1041 (2021).
[74] Samadi Mollayousefi H., Fallah Shojaei A., Mahmoodi N.A., Preparation, Characterization, and Performance Study of PVDF Nanocomposite Contained Hybrid Nanostructure TiO2-POM Used as a Photocatalytic Membrane, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(1): 35-47 (2021).
[75] Li H., Xiao H.-g., Yuan J., Ou J., Microstructure of Cement Mortar with Nano-Particles, Composites part B: engineering, 35(2): 185-189 (2004).
[76] Aramesh Boroujeni Z., Asadi Aghbalaghi Z., Electrochemical Determination Venlafaxine at NiO/GR Nanocomposite Modified Carbon Paste Electrode, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(4): 1042-1053 (2021).
[77] Moarrefzadeh A., Morovvati M.R., Angili S.N., Smaisim G.F., Khandan A., Toghraie D., Fabrication and Finite Element Simulation of 3D Printed poly L-Lactic Acid Scaffolds Coated with Alginate/Carbon Nanotubes for Bone Engineering Applications, International Journal of Biological Macromolecules, 224: 1496-1508 (2022).
[78] Pourabdollahi H., Zarei A.R., Synthesis of Carbon Nanotubes on Cerium-Substituted Barium Ferrite Substrate by Chemical Vapor Deposition for Preparation of a Microwave Absorbing Nanocomposite, Iranian Journal of Chemistry and Chemical Engineering (IJCCE) , 39(1): 1-10 (2020).
[79] Dorozhkin K.V., Dunaevsky G., Sarkisov S.Y., Suslyaev V., Tolbanov O., Zhuravlev V., Sarkisov Y.S., Kuznetsov Moseenkov V., S., Semikolenova N., Terahertz Dielectric Properties of Multiwalled Carbon Nanotube/Polyethylene Composites, Materials Research Express, 4(10): 106201 (2017).
[80] Alaei M., Jalali M., Rashidi A., Simple and Economical Method for the Preparation of MgO Nanostructures with Suitable Surface Area, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 33(1): 21-28 (2014).
[81] Alaei M., Torkian S., Shams M.H., Rashidi A.M., Simple Method for the Preparation of Fe3O4/MWCNT Nanohybrid as Radar Absorbing Material (RAM), Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(6): 9-14 (2018).
[82] Azarkhalil M.S., Keyvani B., Synthesis of Silver Nanoparticles from Spent X-Ray Photographic Solution via Chemical Rreduction, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 35(3): 1-8 (2016).
[83] Ghayour H., Abdellahi M., Ozada N., Jabbrzare S., Khandan A., Hyperthermia Application of Zinc Doped Nickel Ferrite Nanoparticles, Journal of Physics and Chemistry of Solids, 111: 464-472 (2017).
[84] Mirzapour P., Kamyab Moghadas B., Tamjidi S., Esmaeili H., Activated Carbon/Bentonite/Fe3O4 Nanocomposite for Treatment of Wastewater Containing Reactive Red 198, Separation Science and Technology, 56(16): 2693-2707 (2021).
[85] Zhou T., Yu F., Li L., Dong Z., Fini E.H., Swelling-Degradation Dynamic Evolution Behaviors of Bio-Modified Rubberized Asphalt under Thermal Conditions, Journal of Cleaner Production, 139061 (2023).
[86] Tugelbayev A., Kim J.-H., Lee J.U., Chung C.-W., The Effect of Acid Treated Multi-walled Carbon Nanotubes on the Properties of Cement Paste Prepared by Ultrasonication with Polycarboxylate Ester, Journal of Building Engineering, 64:105638 (2023).
[87] Singh A.P., Mishra M., Chandra A., Dhawan S., Graphene Oxide/Ferrofluid/Cement Composites for Electromagnetic Interference Shielding Application, Nanotechnology, 22(46): 465701 (2011).
[88] Chandrasekaran S., Sato N., Tölle F., Mülhaupt R., Fiedler B., Schulte K., Fracture Toughness and Failure Mechanism of Graphene Based Epoxy Composites, Composites Science and Technology, 97: 90-99 (2014).
[89] Sobolkina A., Mechtcherine V., Khavrus V., Maier D., Mende M., Ritschel M., Leonhardt A., Dispersion of Carbon Nanotubes and its Influence on the Mechanical Properties of the Cement Matrix, Cement and Concrete Composites, 34(10): 1104-1113 (2012).
[90] Yazdanbakhsh A., Grasley Z., Tyson B., Al-Rub R.K.A., Distribution of Carbon Nanofibers and Nanotubes in Cementitious Composites, Transportation Research Record, 2142(1): 89-95 (2010).
[91] Ahmed R., Mushtaq A., Hashmi S., Khan R.M., Ali M., Ali Z.U., Development of Polymer-Modified Concrete Using Ethylene Vinyl Acetate Copolymer, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 42(10): 3338-3347 (2023).
[92] Babapoor A., Haghighi A.R., Jokar S.M., Ahmadi Mezjin M., The Performance Enhancement of Paraffin as a PCM During the Solidification Process: Utilization of Graphene and Metal Oxide Nanoparticles, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(1): 37-48 (2022).
[93] Krystek M., Pakulski D., Górski M., Szojda L., Ciesielski A., Samorì P., Electrochemically Exfoliated Graphene for High-Durability Cement Composites, ACS Applied Materials & Interfaces, 13(19): 23000-23010 (2021).
[94] Arbab S.A., Yousafzai N.A., Khan Khattak N.S., Ullah A., Ur Rahman S., Effect of Portland Cement on the Development of Unfired Compressed Earth Bricks; Special Application as Construction Material in Poor Territory of Pakistan, Iranian Journal of Chemistry and Chemical Engineering (IJCCE)42(3): 2060-1067 (2022).
[95] Davarnejad R., Azizi A., Asadi S., Mohammadi M., Green Synthesis of Copper Nanoparticles using Centaurea Cyanus Plant Extract: A Cationic dye Adsorption Application, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(1): 1-14 (2022).
[96] Esmaeili S., Khandan A., Saber-Samandari S., Mechanical Performance of Three-Dimensional Bio-Nanocomposite Scaffolds Designed with Digital Light Processing for Biomedical Applications, Iranian Journal of Medical Physics 15(Special Issue-12th. Iranian Congress of Medical Physics), 328-328 (2018).
[97] Khan N., Mushtaq A., Ahmed R., Khan R.M., Ali Z.U., Development of Poly-Naphthalene Sulphonate Based Concrete Admixture, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 42(8): 2466-2482 (2023).
[98] Fu Q., Li Z., Ding Z., Chen J., Luo J., Wang Y., Lu Y., ED-DQN: An Event-Driven Deep Reinforcement Learning Control Method for Multi-Zone Residential Buildings, Building and Environment, 110546 (2023).
[99] Tian L.-m., Li M.-h., Li L., Li D.-y., Bai C., Novel Joint for Improving the Collapse Resistance of Steel Frame Structures in Column-Loss Scenarios, Thin-Walled Structures, 182: 110219 (2023).
[100] Wang J., Liang F., Zhou H., Yang M., Wang Q., Analysis of Position, pose and Force Decoupling Characteristics of a 4-UPS/1-RPS Parallel Grinding Robot, Symmetry, 14(4): 825 (2022).
[101] Xu L., Cai M., Dong S., Yin S., Xiao T., Dai Z., Wang Y., Soltanian M.R., An Upscaling Approach to Predict Mine Water Inflow from Roof Sandstone Aquifers, Journal of Hydrology, 612:128314 (2022).
[102] Yang K., Guan J., Numata K., Wu C., Wu S., Shao Z., Ritchie R.O., Integrating Tough Antheraea Pernyi Silk and Strong Carbon Fibres for Impact-Critical Structural Composites, Nature Communications, 10(1): 3786 (2019).
[103] Sahmani S., Khandan A., Saber-Samandari S., Aghdam M.M., Effect of Magnetite Nanoparticles on the Biological and Mechanical Properties of Hydroxyapatite Porous Scaffolds Coated with Ibuprofen Drug, Materials Science and Engineering: C, 111: 110835 (2020).
[104] Sahmani S., Saber-Samandari S., Khandan A., Aghdam M.M., Influence of MgO Nanoparticles on the Mechanical Properties of Coated Hydroxyapatite Nanocomposite Scaffolds Produced via Space Holder Technique: Fabrication, Characterization and Simulation, Journal of the Mechanical Behavior of Biomedical Materials, 95: 76-88 (2019).
[105] Teimouri A., Barbaz Isfahani R., Saber-Samandari S., Salehi M., Experimental and Numerical Investigation on the Effect of Core-Shell Microcapsule Sizes on Mechanical Properties of Microcapsule-Based Polymers, Journal of Composite Materials, 56(18): 2879-2894 (2022).
[106] Diamond S.A., Kennedy A.J., Melby N.L., Moser R.D., Poda A., Weiss C. Jr, Brame J., Assessment of the Potential Hazard of Nano-Scale TiO2 in Photocatalytic Cement: Application of a Tiered Assessment Framework, NanoImpact, 8: 11-19 (2017).
[107] de Souza F.B., Yao X., Lin J., Naseem Z., Tang Z.Q., Hu Y., Gao W., Sagoe-Crentsil K., Duan W., Effective Strategies to Realize High-Performance Graphene-Reinforced Cement Composites, Construction and Building Materials 324: 126636(2022).
[108] He H., Shuang E., Wen T., Yao J., Wang X., He C., Yu Y., Employing Novel N-Doped Graphene Quantum Dots to Improve Chloride Binding of Cement, Construction and Building Materials, 401 132944 (2023).
[109] R Boveiri Shami., Shojaei V., Khoshdast H., Removal of Some Cationic Contaminants from Aqueous Solutions Using Sodium Dodecyl Sulfate-Modified Coal Tailings, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(4):  1105-1120(2021).
[110] Enayati Ahangar L., Movassaghi K., Yaghoobi F., The pH Role in Nanotechnology, Electrochemistry, and Nano-Drug Delivery, Iranian Journal of Chemistry and Chemical Engineering  (IJCCE), 41(7): 2175-2188 (2022).
[111] Hasan Z.R., . Al-Hasani N.R, Mahmood M.A., Ibrahim A.I., Effect of Amoxicillin and Azithromycin Suspensions on Microhardness of Sliver Reinforced and Nano Resin-Modified Glass Ionomers: An In Vitro Study, Dental Hypotheses 14(1): 32 (2023).
[113] Jasemi A., Moghadas B.K., Khandan A., Saber-Samandari S., A Porous Calcium-Zirconia Scaffolds Composed of Magnetic Nanoparticles for Bone Cancer Treatment: Fabrication, Characterization and FEM Analysis, Ceramics International, 48(1): 1314-1325 (2022).
[114] Samatya Yilmaz S., Aytac A., Production and Characterization of Antibacterial Effective Nanofiber from TPU-Ag NPs and PLA Designed Using Coaxial Electrospinning for Potential use in Wound Dressing, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 42(9): 2757-2774 (2023).
[115] Saikumari N., Comparative Study on Structuring and Photocatalytic Activity of Nano Titania Embossed with Organic Extracts, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(9): 2886-2899 (2022).
[116] Diamanti M.V., Codeluppi S., Cordioli A., Pedeferri M., Effect of Thermal Oxidation on Titanium Oxides' Characteristics, Journal of Experimental Nanoscience, 4(4): 365-372 (2009).
[117] Ramesh S., Kamalarajan P., Effect of Clay Modifier on the Structure and Transport Properties in Polyurethane/Clay Nanocomposites as Barrier Materials, Iranian Journal of Chemistry and Chemical Engineering (IJCCE)41(11):  3621-3631 (2022).
[118] Sahmani S., Shahali M., Khandan A., Saber-Samandari S., Aghdam M., Analytical and Experimental Analyses for Mechanical and Biological Characteristics of Novel Nanoclay Bio-Nanocomposite Scaffolds Fabricated via Space Holder Technique, Applied Clay Science, 165: 112-123 (2018).
[119] Ghorbani M., Ehsani A., Soleimani M., Polypyrrole/Silver Nanocomposite: Synthesis, Characterization and Antibacterial Activity, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(3): 1-7 (2019).
[121] Qayyum S., Mehmood M., Mirza M.A., Ashraf S., Ahmed Z., Tanvir T., Choudhary M.A., Iqbal M., Nisar F., Nisa Z.U., Synthesis and Characterization of Silver and Gold Nano-Structures on Chitosan-Porous Anodic Alumina Nano-Composite, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(6): 31-44 (2019).
[122] Yin B., Wu C., Hou D., Li S., Jin Z., Wang M., Wang X., Research and Application Progress of Nano-Modified Coating in Improving the Durability of Cement-Based Materials, Progress in Organic Coatings, 161: 106529 (2021).
[123] Gholinezhad F., Moghbeli M.R., Aghaei A., Allahverdi A., Effect of Organoclay Reinforced Acrylate Latex Particles on the Cement Paste Performance, Journal of Dispersion Science and Technology, 42(3): 416-431 (2021).
[124] Al-Zu'bi M., Fan M., Anguilano, Advances in Bonding Agents for Retrofitting Concrete Structures with Fibre Reinforced Polymer Materials: A Review, Construction and Building Materials, 330: 127115 (2022).
[125] Gong K., Pan Z., A. Korayem H., Qiu L., Li D., Collins F., Wang C.M., Duan W.H., Reinforcing Effects of Graphene Oxide on Portland Cement Paste, Journal of Materials in Civil Engineering, 27(2): A4014010 (2015).
[126] Jalal M., Pouladkhan A., Harandi O.F., Jafari D., Comparative Study on Effects of Class F fly Ash, Nano Silica and Silica Fume on Properties of High Performance self Compacting Concrete, Construction and Building Materials, 94(90): 104 (2015).
[127] Pacheco-Torgal F., Jalali S., Nanotechnology: Advantages and Drawbacks in the Field of Construction and Building Materials, Construction and building materials, 25(2): (2011) 582-590.
[128] Ganesh V.A., Raut H.K., Nair A.S., Ramakrishna S., A Review on Self-Cleaning Coatings, Journal of Materials Chemistry, 21(41): 16304-16322 (2011).
[129] Somarathna H., Raman S., Mohotti D., Mutalib A., Badri K., The Use of Polyurethane for Structural and Infrastructural Engineering Applications: A State-of-the-Art Review, Construction and Building Materials, 190: 995-1014 (2018).
[130] Zou J., Liu L., Chen H., Khondaker S.I., McCullough R.D., Huo Q., Zhai L., Dispersion of Pristine Carbon Nanotubes Using Conjugated Block Copolymers, Advanced Materials, 20(11): 2055-2060 (2008).
[131] Barbaz-Isfahani R., Saber-Samandari S., Salehi M., Experimental and Numerical Research on Healing Performance of Reinforced Microcapsule-Based Self-Healing Polymers Using Nanoparticles, Journal of Reinforced Plastics and Composites, 42(3-4): 95-109 (2023).
[132] Han B., Wang Y., Dong S., Zhang L., Ding S., Yu X., Ou J., Smart Concretes and Structures: A Review, Journal of Intelligent Material Systems And Structures, 26(11): 1303-1345 (2015).
[133] Parsafar N., Ghafouri V., Banaei A., Electrochemical Sensing of H2S Gas in air by Carboxylated Multi-Walled Carbon Nanotubes, Iranian Journal of Chemistry and Chemical Engineering(IJCCE) , 38(6): 53-62 (2019).
[134] Lee C., Wei X., Kysar J.W., Hone J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321(5887) 385-388 (2008).
[135] Dreyer D.R., Todd A.D., Bielawski C.W., Harnessing the Chemistry of Graphene Oxide, Chemical Society Reviews 43(15): 5288-5301 (2014).
[136] Du H., Dai Pang S., Enhancement of Barrier Properties of Cement Mortar with Graphene Nanoplatelet, Cement and Concrete Research, 76: 10-19 (2015).
[137] Rahmanian S., Suraya A., Shazed M., Zahari R., Zainudin E., Mechanical Characterization of Epoxy Composite with Multiscale Reinforcements: Carbon Nanotubes and Short Carbon Fibers, Materials & design, 60: 34-40 (2014).
[138] Keshavarz M.R., Hassanajili S., Effect of Graphene Oxide Reduction with L-Ascorbic Acid on Electrical Conductivity and Mechanical Properties of Graphene Oxide-Epoxy Nanocomposites, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(3): 731-742 (2021).
[139] Inam F., Vo T., Jones J.P., Lee X., Effect of Carbon Nanotube Lengths on the Mechanical Properties of Epoxy Resin: An Experimental Study, Journal of Composite Materials, 47(19): 2321-2330 (2013).
[140] Baskar A.V., Benzigar M.R., Talapaneni S.N., Singh G., Karakoti A.S., Yi J., Al‐Muhtaseb A.a.H., Ariga K., Ajayan P.M., Vinu A., Self‐Assembled Fullerene Nanostructures: Synthesis and Applications, Advanced functional materials, 32(6): 2106924 (2022)
[141] Domun N., Hadavinia H., Zhang T., Sainsbury T., Liaghat G., Vahid S., Improving the Fracture toughness and the Strength of Epoxy Using Nanomaterials–A Review of the Current Status, Nanoscale, 7(23): 10294-10329 (2015).
[142] Azimpour-Shishevan F., Mohtadi-Bonab M., Akbulut H., Rahmatinejad B., Low Velocity Impact Behavior of twill Basalt/Epoxy Composites Modified by Graphene Nanoparticles, Journal of Composite Materials, 57(8): 1379-1394 (2023).
[143] Dong S., Zhang W., Wang X., Han B., New-Generation Pavement Empowered by Smart and Multifunctional Concretes: A Review, Construction and Building Materials, 402: 132980 (2023).
[144] Wu Y., Song Y., Wu D., Mao X., Yang X., Jiang S., Zhang C., Guo R., Recent Progress in Modifications, Properties, and Practical Applications of Glass Fiber, Molecules, 28(6): 2466 (2023).
[145] Zheng S., Wang Y., Zhu Y., Zheng C., Recent Advances in the Construction and Properties of Carbon-Based Nanofillers/Polymer Composites with Segregated Network Structures, Materials Today Communications, 106773 (2023).
[146] Sharifiana M., Shahrajabian H., The Study of Mechanical, Thermal, and Antibacterial Properties of PLA/Graphene Oxide/TiO2 Hybrid Nanocomposites, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(3): 799-807 (2022).
[147] Gojny F.H., Wichmann M.H., Fiedler B., Kinloch I.A., Bauhofer W., Windle A.H., Schulte K., Evaluation and Identification of Electrical and Thermal Conduction Mechanisms in Carbon Nanotube/Epoxy Composites, Polymer, 47(6): 2036-2045 (2006).
[148] Zhang F., Liu W., Liang L., Yang M., Wang S., Shi H., Xie Y., Pi K., Application of Polyether Amine Intercalated Graphene Oxide as Filler for Enhancing Hydrophobicity, Thermal Stability, Mechanical and Anti-Corrosion Properties of Waterborne Polyurethane, Diamond and Related Materials, 109: 108077 (2020).
[149] Kadaplar S., Charhate S., A Comprehensive Review on the Progress of Cement Composites Modified by Nanomaterials, AIP Conference Proceedings, AIP Publishing, 2023.
[150] Luo S., Li X., Lin W., Wang D., Effects of Graphene Oxide on Resistance to Chloride Ion Penetration of Concrete, Magazine of Concrete Research, 74(19): 975-988 (2022).
[151] Brown A.D., Bakis C.E., Smith E.C., Effect of Carbon Nanotube Surface Treatment on the Dynamic Mechanical Properties of a Hybrid Carbon/Epoxy Composite Laminate, Composites Science and Technology, 231: 109807(2023).
[152] Xu D., Liang G., Qi Y., Gong R., Zhang X., Zhang Y., Liu B., Kong L., Dong X., Li Y., Enhancing the Mechanical Properties of Waterborne Polyurethane Paint by Graphene Oxide for Wood Products, Polymers, 5456 14(24): (2022).
[154] Y Wang., Xu M., Zhao J., Xin A., Nano-ZnO Modified Geopolymer Composite Coatings for Flame-Retarding Plywood, Construction and Building Materials, 338: 127649 (2022).
[155] Subramanian R., Sabeena G.K., Ponnanikajamideen M., Rajeshkumar S., Annadurai G., Sivasubramanian G., Synthesis of Green Zinc Oxide Nanoparticles Mediated by Syzygium cumini Induced Developmental Deformation in Embryo Toxicity of (Daniorerio) Zebrafish, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(12): 3895-3904 (2022).
[156] Barbaz-Isfahani R., Dadras H., Saber-Samandari S., Taherzadeh-Fard A., Liaghat G., A comprehensive Investigation of the Low-Velocity Impact Response of Enhanced GFRP Composites with Single and Hybrid Loading of Various Types of Nanoparticles, Heliyon, 9(5) (2023).
[157] Ekrami-Kakhki M.-S., Naeimi A., Donyagard F., Pt Nanoparticles Supported on a Novel Electrospun Polyvinyl Alcohol-CuOCo3O4/Chitosan Based on Sesbania Sesban Plant as an Electrocatalyst for Direct Methanol Fuel Cells, International Journal of Hydrogen Energy, 44(3): 1671-1685 (2019).
[159] Kim K.T., Cha S.I., Hong S.H., Hong S.H., Microstructures and Tensile Behavior of Carbon Nanotube Reinforced Cu Matrix Nanocomposites, Materials Science and Engineering: A,  430(1-2): 27-33 (2006).
[160] Asua J.M., Miniemulsion Polymerization, Progress in Polymer Science, 27(7): 1283-1346 (2002).
[161] Teo B.M., Chen F., Hatton T.A., Grieser F., Ashokkumar M., Novel One-Pot Synthesis of Magnetite Latex Nanoparticles by Ultrasound Irradiation, Langmuir, 25(5): 2593-2595 (2009).
[162] Qasim O.A., Experimental Investigation on Effect of SBR and Steel Fiber on Properties of Different Concrete Types, Int. J. of Civil Engg. Tech, 9(2): 361-378 (2018).
[163] Wu K., Gui T., Dong J., Luo J., Liu R., Synthesis of Robust Polyaniline Microcapsules via UV-Initiated Emulsion Polymerization for self-Healing and Anti-Corrosion Coating, Progress in Organic Coatings, 162:106592 (2022).
[164] Bagherzadeh A., Jamshidi M., Monemian F., Investigating Mechanical and Bonding Properties of Micro/Nano Filler Containing Epoxy Adhesives for Anchoring Steel Bar in Concrete, Construction and Building Materials, 240: 117979 : (2020).
[165] Nguyen C.H., Le D.Q., Nanocellulose Preparation from Sugarcane Bagasse and its Application for Paper Sizing, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 42(1): 27-37 (2022).
[166] Heydary H.A., Karamian E., Poorazizi E., Heydaripour J., Khandan A., Electrospun of Polymer/Bioceramic Nanocomposite as a New Soft Tissue for Biomedical Applications, Journal of Asian Ceramic Societies, 3(4): 417-425 (2015).
[167] Du Q., Rao R., Bi F., Yang Y., Zhang W., Yang Y., Liu N., Zhang X., Preparation Of Modified Zirconium-Based Metal-Organic Frameworks (Zr-MOFs) Supported Metals and Recent Application in Environment: A Review and Perspectives, Surfaces and Interfaces, 28: 101647 (2022)
[168] Farahmandjou M., Khodadadi A., Yaghoubi M., Synthesis and Characterization of Fe-Al2O3 Nanoparticles Prepared by Coprecipitation Method, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(3): 725-730 (2021).
[169] Guo F., Aryana S., Han Y., Jiao Y., A Review of the Synthesis and Applications of Polymer–Nanoclay Composites, Applied Sciences, 8(9): 1696 (2018).
[170] Jafaripour N., Omidvar H. Saber-Samandari, S., Mohammadi R., Shokrani Foroushani R., Kamyab Moghadas B., Soleimani M., Noshadi B., Khandan A., Synthesize and Characterization of a Novel‎ Cadmium Selenide‏‏ Nanoparticle with Iron‎ Precursor Applicable in Hyperthermia of‎ Cancer Cells, International Journal of Nanoscience and Nanotechnology, 17(2): 77-90 (2021).
[171] Rahbar M., Kamyab-Moghadas B., Production of Polyvinyl Alcohol/Silica Nano-Composite Membrane for Evaluation of Permeability Properties of CO2/CH4, Journal of Nanomaterials, 12(41): 53-60 (2020).
[172] Das S., Ngashangva L., Goswami P., Carbon Dots: An Emerging Smart Material for Analytical Applications, Micromachines, 12(1): 84 (2021).
[173] Raisi A., Asefnejad A., Shahali M., Z Doozandeh., Kamyab Moghadas B., Saber-Samandari S., Khandan A., A Soft Tissue Fabricated Using a Freeze-Drying Technique with Carboxymethyl Chitosan and Nanoparticles for Promoting Effects on Wound Healing, Journal of Nanoanalysis, 7(4): 262-274 (2020).
[174] Sharafabadi A.K., Abdellahi M., Kazemi A., Khandan A., Ozada N., A Novel and Economical Route for Synthesizing Akermanite (Ca2MgSi2O7) nano-Bioceramic, Materials Science and Engineering: C.,  71: 1072-1078 (2017).
[175] Yu H., Zhang J., Fang M., Ma T., Wang B., Zhang Z., Z Hu., Li H., Cao X., Ding C., Bio-Inspired Strip-Shaped Composite Composed of Glass Fabric and Waste Selvedge from A. Pernyi Silk for Lightweight and High-Impact Applications, Composites Part A: Applied Science and Manufacturing, 174: 107715 (2023).
[176] Hatami L., Jamshidi M., Yavari M., Improving Mechanical/Colorimetric Properties of self-Compacting Mortar Using an Intensively Colored-Nanoparticle Containing Polymeric Paste, Journal of Building Engineering, 66: 105841 (2023).
[177] Liu X., L Chen., Liu A., Wang X., Effect of Nano-CaCO3 on Properties of Cement Paste, Energy procedia, 16: 991-996 (2012).
[178] Dai M., Wang J., Zhang Y., Improving Water Resistance of Waterborne Polyurethane Coating with High Transparency and Good Mechanical Properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 601: 124994 (2020).
[179] Ardanuy Raso M., J Claramunt Blanes., Arévalo Peces R., Parés Sabatés F., Aracri E., Vidal Lluciá T., Nanofibrillated Cellulose (NFC) as a Potential Reinforcement for High Performance Cement Mortar Composites, BioResources, 7(3): 3883-3894 (2012).
[180] Göbel L., Bos C., Schwaiger R., Flohr A., A Osburg., Micromechanics-Based Investigation of the Elastic Properties of Polymer-Modified Cementitious Materials Using Nanoindentation and Semi-Analytical Modeling, Cement and Concrete Composites, 88: 100-114 (2018).
[181] Guo X., Xiong C., Jin Z., Pang B., A review on Mechanical Properties of FRP Bars Subjected to Seawater Sea sand Concrete Environmental Effects, Journal of Building Engineering, 105038 (2022).
[182] Yadav M., Saha J.K., Ghosh S.K., Evaluation of Mechanical and Tribological Behavior of Galvanized, Galvalume and Polyurethane-Coated Steel Sheets, Engineering Research Express, 5(1): 015064 (2023).
[183] Cao Y., Zavaterri P., Youngblood J., Moon R., Weiss J., The Influence of Cellulose Nanocrystal Additions on the Performance of Cement Paste, Cement and Concrete Composites, 56: 73-83 (2015).
[184] Grinys A., Augonis A., Daukšys M., Pupeikis D., Mechanical Properties and Durability of Rubberized and SBR Latex Modified Rubberized Concrete, Construction and Building Materials, 248: 118584 (2020).
[185] X Shi., Brescia-Norambuena L., Grasley Z., Hogancamp J., Fracture Properties and Restrained Shrinkage Cracking Resistance of Cement Mortar Reinforced by Recycled Steel Fiber from Scrap Tires, Transportation Research Record, 2674(8): 581-590 (2020).
[186] Li J., Gan L., Liu Y., Mateti S., Lei W., Chen Y., Yang J., Boron Nitride Nanosheets Reinforced Waterborne Polyurethane Coatings for Improving Corrosion Resistance and Antifriction Properties, European Polymer Journal, 104: 57-63 (2018).
[188] Bhogayata A.C., Arora N.K., Workability, Strength, and Durability of Concrete Containing Recycled Plastic Fibers and Styrene-Butadiene Rubber Latex, Construction and Building Materials, 180: 382-395 (2018).
[189] Kasi G., Gnanasekar S., Zhang K., Kang E.T., Xu L.Q., Polyurethane‐Based Composites with Promising Antibacterial Properties, Journal of Applied Polymer Science, 139(20): 52181 (2022).
[190] Wang S., Wang Z., Huang T., Wang P., Zhang G., Mechanical Strengths, Drying Shrinkage and Pore Structure of Cement Mortars with Hydroxyethyl Methyl Cellulose, Construction and Building Materials, 314: 125683 (2022).
[191] Barbaz-Isfahani R., Dadras H., Taherzadeh-Fard A., Zarezadeh-Mehrizi M.A., Saber-Samandari S., Salehi M., Liaghat G., Synergistic Effects of Incorporating Various Types of Nanoparticles on Tensile, Flexural, and Quasi-Static Behaviors of GFRP Composites, Fibers and Polymers, 23(7): 2003-2016 (2022).
[192] Ahmadizadegan H., Polyester/SiO2 Nanocomposites: Gas Permeation, Mechanical, Thermal and Morphological Study of Membranes, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(2): 33-47 (2020).
[193] Safiuddin M., Gonzalez M., J Cao., Tighe S.L., State-of-the-Art Report on Use of Nano-Materials in Concrete, International Journal of Pavement Engineering, 15(10): 940-949 (2014)
[194] M Khan.A., Imam M.K., Irshad K., Ali H.M., Hasan M.A., S Islam., Comparative Overview of the Performance of Cementitious and Non-Cementitious Nanomaterials in Mortar at Normal and Elevated Temperatures, Nanomaterials, 11(4): 911 (2021).
[195] Yang H., Cui H., Tang W., Li Z., Han N., Xing F., A Critical Review on Research Progress of Graphene/Cement Based Composites, Composites Part A: Applied Science and Manufacturing, 102: 273-296 (2017).
[196] Lim Y.Y., Pham T.M., Influence of Portland Cement on Performance of Fine Rice Husk Ash Geopolymer Concrete: Strength and Permeability Properties, Construction and Building Materials, 300: 124321 (2021).
[197] Shilar F.A., Ganachari S.V., V Patil.B., Khan T.Y., Almakayeel N.M., Alghamdi S., Review on the Relationship between Nano Modifications of Geopolymer Concrete and their Structural Characteristics, Polymers, 14(7): 1421 (2022).
[198] Chintalapudi K., R Pannem.M.R., An Intense Review on the Performance of Graphene Oxide and Reduced Graphene Oxide in an Admixed Cement System, Construction and Building Materials, 259: 120598 (2020).
[199] Khammarnia S., Akbari A., Ekrami-Kakhki M.-S., Saffari J., Enhanced Catalytic Activity of Pt-NdFeO3 Nanoparticles Supported on Polyaniline-Chitosan Composite Towards Methanol Electro-Oxidation Reaction, Journal of Nanostructures, 10(2): 239-257 (2020).
[200] Han B., Yu X., Ou J., Self-Sensing Concrete in Smart Structures, Butterworth-Heinemann (2014).
[201] M. Sarmadi, P. Nassiri, Razavian F., Khoshmanesh B., Reduction in Noise Pollution of a Gas Power Plant under Construction Using Synthesis of Copper and Nickel Alloy Foam in a Simulated Setting, Iranian Journal of Chemistry and Chemical Engineering  (IJCCE), 41(7): 2400-2405 (2022).
[202] Peng T., R Xiao., Rong Z., Liu H., Hu Q., S Wang., Li X., Zhang J., Polymer Nanocomposite‐Based Coatings for Corrosion Protection, Chemistry–An Asian Journal, 15(23): 3915-3941 (2020).
[203] Tabish M., M Zaheer.M., Baqi A., Effect of Nano-Silica on Mechanical, Microstructural and Durability Properties of Cement-Based Materials: A Review, Journal of Building Engineering, 105676 (2022).
[204] X Ming., Q Liu., Wang M., Cai Y., B Chen., Li Z., Improved Chloride Binding Capacity and Corrosion Protection of Cement-Based Materials by Incorporating Alumina Nano Particles, Cement and Concrete Composites, 136: 104898 (2023).
[205] C. Pereira, Martins M., Flame Retardancy of Fiber-Reinforced Polymer Composites Based on Nanoclays and Carbon Nanotubes, Polymer Green Flame Retardants, Elsevier, 551-595 (2014).
[206] Nalon G.H., J Ribeiro.C.L., de Araújo E.N.D., Pedroti L.G., de Carvalho J.M.F., Santos R.F., Aparecido-Ferreira A., Effects of Different Kinds of Carbon Black Nanoparticles on the Piezoresistive and Mechanical Properties of Cement-Based Composites, Journal of Building Engineering, 32: 101724 (2020).
[207] D'Alessandro A., M Rallini., Ubertini F., Materazzi A.L., Kenny J.M., Investigations on Scalable Fabrication Procedures for Self-Sensing Carbon Nanotube Cement-Matrix Composites for SHM Applications, Cement and Concrete Composites, 65: 200-213 (2016).
[208] Gupta S., Lin Y.-A., Lee H.-J., Buscheck J., Wu R., Lynch J.P., N Garg., Loh K.J., In Situ Crack Mapping of Large-Scale Self-Sensing Concrete Pavements Using Electrical Resistance Tomography, Cement and Concrete Composites, 122: 104154 (2021).
[209] Giannantonio D.J., Kurth J.C., Kurtis K.E., Sobecky P.A., Effects of Concrete Properties and Nutrients on Fungal Colonization and Fouling, International Biodeterioration & Biodegradation, 63(3): 252-259 (2009).
[210] Guo D., Feng D., Zhang Y., Zhang Z., Wu J., Zhao Y., Sun S., Synergistic Mechanism of Biochar-Nano TiO2 Adsorption-Photocatalytic Oxidation of Toluene, Fuel Processing Technology, 229: 107200 (2022).
[212] Lackhoff M., Prieto X., Nestle N., Dehn F., Niessner R., Photocatalytic Activity of Semiconductor-Modified Cement—Influence of Semiconductor Type and Cement Ageing, Applied Catalysis B: Environmental, 43(3): 205-216 (2003).
[213] Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A., Toxicity of Ag, CuO and ZnO Nanoparticles to Selected Environmentally Relevant Test Organisms and Mammalian Cells in vitro: A Critical Review, Archives of toxicology, 87: 1181-1200 (2013).
[214] Al-Zaqri N., Umamakeshvari K., Mohana V., Muthuvel A., Boshaala A., Green Synthesis of Nickel Oxide Nanoparticles and its Photocatalytic Degradation and Antibacterial Activity, Journal of Materials Science: Materials in Electronics, 33(15): 11864-11880 (2022).
[215] Hu J., Zhang S., Chen E., Li W., A Review on Corrosion Detection and Protection of Existing Reinforced Concrete (RC) Structures, Construction and Building Materials325: 126718 (2022).
[216] Ghafari E., Costa H., Júlio E., Portugal A., Durães L.,
The Effect of Nanosilica Addition on Flowability, Strength and Transport Properties of Ultra High Performance Concrete, Materials & Design, 59: 1-9 (2014).
[217] P Hou., Cheng X., Qian J., Shah S.P., Effects and Mechanisms of Surface Treatment of Hardened Cement-Based Materials with Colloidal NanoSiO2 and its Precursor, Construction and Building Materials, 53: 66-73 (2014).
[218] Dong B., Ding W., Qin S., Han N., Fang G., Liu Y., Xing F., Hong S., Chemical Self-Healing System with Novel Microcapsules for Corrosion Inhibition of Rebar in Concrete, Cement and Concrete Composites, 85: 83-91 (2018).
[219] Bardin A., A. Korotkov, Kazarnovskij V., Limit of Fire Resistance of a Steel Transport Structures. Simplified Calculation Methods, IOP Conference Series: Earth and Environmental Science, IOP Publishing, 012207 (2017).
[220] Korotkov A., Gravit M., 3D-Map Modelling for the Melting Points Prediction of Intumescent Flame-Retardant Coatings, SAR and QSAR in Environmental Research, 28(8): 677-689  (2017).
[221] Korotkov A.S., Melamine/Monoammonium Phosphate Complex as the Polyphosphate Substitute in Flame Retardant Coatings, Journal of Fire Sciences, 34(2): 89-103 (2016).
[222] Ma Z., Liu X., Xu X., Liu L., Yu B., Maluk C., Huang G., Wang H., Song P., Bioinspired, Highly Adhesive, Nanostructured Polymeric Coatings for Superhydrophobic Fire-Extinguishing Thermal Insulation Foam, ACS Nano, 15(7): 11667-11680 (2021).
[223] Kong D., Du X., Wei S., Zhang H., Yang Y., Shah S.P., Influence of Nano-Silica Agglomeration on Microstructure and Properties of the Hardened Cement-Based Materials, Construction and Building Materials, 37: 707-715 (2012).
[224] Idumah C.I., Hassan A., Emerging Trends In Eco-Compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites, Reviews in Chemical Engineering, 32(3): 305-361 (2016).
[225] Cao M., Cui T., Yue Y., Li C., Guo X., Jia X., Wang B., Preparation and Characterization for the Thermal Stability and Mechanical Property of PLA and PLA/CF Samples Built by FFF Approach, Materials, 16(14): 5023  (2023).
[227] Hapuarachchi T.D., Peijs T., Bilotti E., Thermal Degradation and Flammability Behavior of Polypropylene/Clay/Carbon Nanotube Composite Systems, Polymers for advanced technologies, 24(3): 331-338 (2013).
[228] Qian W., Texter J., Yan F., Frontiers in Poly (Ionic Liquid) S: Syntheses and Applications, Chemical Society Reviews 46(4): 1124-1159 (2017).
[230] Sharma R., Jang J.G., Bansal P.P., A Comprehensive Review on Effects of Mineral Admixtures and Fibers on Engineering Properties of Ultra-High-Performance Concrete, Journal of Building Engineering, 45: 103314 (2022).
[231] Saghafi H., Fotouhi M., Minak G., Improvement of the Impact Properties of Composite Laminates by Means of Nano-Modification of the Matrix—A Review, Applied Sciences, 8(12): 2406 (2018).
[232] Gao M., Shih C.-C., Pan S.-Y., Chueh C.-C., Chen W.-C., Advances and Challenges of Green Materials for Electronics and Energy Storage Applications: From Design to end-of-Life Recovery, Journal of Materials Chemistry A 6(42): 20546-20563 (2018).
[233] Chowdhury M.S., Rahman K.S., Chowdhury T., Nuthammachot N., Techato K., M Akhtaruzzaman., Tiong S.K., Sopian K., Amin N., An Overview of Solar Photovoltaic Panels’ end-of-Life Material Recycling, Energy Strategy Reviews 27: 100431 (2020).
[235] Hakamy A., Shaikh F., Low I.M., Microstructures and Mechanical Properties of Hemp Fabric Reinforced Organoclay–Cement Nanocomposites, Construction and Building Materials, 49: 298-307 (2013).
[236] C Kansal., Singla S., Garg R., “Effect of Silica Fume & Steel Slag on Nano-Silica Based High-Performance Concrete”, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 012012 (2020).
[237] Mahian O., Bellos E., Markides C.N., Taylor R.A., Alagumalai A., Yang L., Qin C., Lee B.J., Ahmadi G., Safaei M.R., Recent Advances in Using Nanofluids in Renewable Energy Systems and the Environmental Implications of their Uptake, Nano Energy, 86: 106069 (2021)
[238] Hoornweg D., Bhada‐Tata P., Kennedy C., Peak Waste: When Is It Likely to Occur?, Journal of Industrial Ecology, 19(1): 117-128 (2015).
[239] Allujami H.M., Abdulkareem M., Jassam T.M., Al-Mansob R.A., Ng J.L., Ibrahim A., Nanomaterials in Recycled Aggregates Concrete Applications: Mechanical Properties and Durability, A Review, Cogent Engineering, 9(1): 2122885 (2022).
[240] Wang Y., O'connor D., Shen Z., Lo I.M., Tsang D.C., Pehkonen S., Pu S., Hou D., Green Synthesis of Nanoparticles for the Remediation of Contaminated Waters and Soils: Constituents, Synthesizing Methods, and Influencing Factors, Journal of Cleaner Production, 226: 540-549 (2019).
[241] Hartmann N.B., Jensen K.A., Baun A., Rasmussen K., Rauscher H., Tantra R., Cupi D., Gilliland D., Pianella F., Riego Sintes J.M., Techniques and Protocols for Dispersing Nanoparticle Powders in Aqueous Media—is there a Rationale for Harmonization?, Journal of Toxicology and Environmental Health, Part B., 18(6): 299-326 (2015).
[242] Barbaz-Isfahani R., Saber-Samandari S., Salehi M., Multi-Scale Modeling and Experimental Study on Electrosprayed Multicore Microcapsule-Based Self-Healing Polymers, Mechanics of Advanced Materials and Structures, 1-14 (2022).
[243] Salehi Artimani J., Arjomand M., Enhessari M., Javanbakht M., Proton Conducting Nanocomposite Membranes Based on Poly Vinyl Alcohol (PVA)/Glutaraldehyde (GA) for Proton Exchange Membrane Fuel Cells, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(1): 69-82 (2021).
[244] Shaltouki P., Mohamadi E., Moghaddasi M.A., Farahbakhsh A., Bahmanpour H., Synthesis and Characterization of Nanoparticles Propolis Using Beeswax, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(2): 9-19 (2019).
[245] Jin M., Ma Y., Li W., Huang J., Yan Y., Zeng H., Lu C., Liu J., Multi-Scale Investigation on Composition-Structure of C-(A)-SH with Different Al/Si Ratios under Attack of Decalcification Action, Cement and Concrete Research, 172:  107251 (2023).
[246] Mohamed A.K., Weckwerth S.A., Mishra R.K., Heinz H., Flatt R.J., Molecular Modeling of Chemical Admixtures; Opportunities and Challenges, Cement and Concrete Research, 156: 106783 (2022).
[247] Badjian H., Setoodeh A., Bavi O., Rabczuk T., Enhanced Mechanical Properties of Epoxy-Based Nanocomposites Reinforced with Functionalized Carbon Nanobuds, Applied Physics A, 127(12): 945 (2021).
[248] Poorsargol M., Poorgalavi M., Samareh Delarami H., Sanchooli M., Karimi P., Molecular Dynamics Simulation of Mixed Surfactants Adsorption on Graphene Nano-Sheets: Effects of Temperature, Electrolyte, and Alcohol, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(12): 4067-4079 (2022).
[249] Dadras H., Barbaz‐Isfahani R., Saber‐Samandari S., Salehi M., Experimental and Multi‐Scale Finite Element Modeling for Evaluating Healing Efficiency of Electro‐Sprayed Microcapsule Based Glass Fiber‐Reinforced Polymer Composites, Polymer Composites, 43(9): 5929-5945 (2022).
[250] Dadras H., Teimouri A., Barbaz-Isfahani R., Saber-Samandari S., Indentation, Finite Element Modeling and Artificial Neural Network Studies on Mechanical Behavior of GFRP Composites in an Acidic Environment, Journal of Materials Research and Technology, 24: 5042-5058 (2023).
[251] Wang Z., Liu F., Liang W., Zhou L., Nanoscale Analysis of Tensile Properties and Fracture of Nanoreinforced Epoxy Polymer Using Micromechanics, Journal of Reinforced Plastics and Composites, 32(16): 1224-1233 (2013).
[252] Xuejun T., Jianlin L., Jigang Z., Min Z., Liqing Z., Yibo G., Progress in FEM Modeling on Mechanical and Electromechanical Properties of Carbon Nanotube Cement-Based Composites, Nanotechnology Reviews, 12(1): 20220522 (2023).
[253] Merah A., Concrete Anti-Carbonation Coatings: A Review, Journal of Adhesion Science and Technology, 35(4): 337-356 (2021).
[254] Châtel A., Auffan M., Perrein-Ettajani H., Brousset L., I Métais., Chaurand P., Mouloud M., Clavaguera S., Gandolfo Y., Bruneau M., The Necessity of Investigating a Freshwater-Marine Continuum Using a Mesocosm Approach in Nanosafety: The Case Study of TiO2 MNM-Based Photocatalytic Cement, NanoImpact, 20: 100254 (2020).
[255] Quinteros L., Garcia-Macias E., Martinez-Paneda E., Micromechanics-Based Phase Field Fracture Modelling of CNT Composites, Composites Part B: Engineering, 236: 109788 (2022).