Effect of Clay Modifier on the Structure and Transport Properties in Polyurethane/Clay Nanocomposites as Barrier Materials

Document Type : Research Article


1 Department of Chemistry, R.M.D. Engineering College, Kavaraipettai 601206, Tamilnadu, INDIA

2 Department of Chemistry, Government Arts College, Nandanam, Chennai 600035, Tamilnadu, INDIA


In this study, nanocomposites of Thermoplastic Polyurethane (TPU) clay are synthesized and used as a gas barrier property. The NCO-terminated TPU prepolymer was prepared by solution polymerization method using a 1:2 ratio of Polyethylene glycol (PEG2000) and Tolylene 2,4-diisocyanate (TPI). Organo-modified montmorillonite clay, Cloisite 25A(C25A) was used as ample compatibilization with PEG/TPI matrix. The prepared nanocomposite was characterized by Fourier Transform InfraRed (FT-IR) spectroscopy, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and ThermoGravimetric Analysis (TGA). The main functional group peaks of the nanocomposite materials are observed in FT-IR spectroscopy. The nanocomposites exhibited better thermal stabilities than pristine Polyurethane which is investigated by TGA. Thermal stability in the sample with 5 wt.% of TPU/C25A-5 material has improved up to 70ºC. The XRD results have confirmed the penetration of clay into TPU matrix, with the disappearance of the characteristic peak (2θ = 4.81º) corresponding to the d-spacing of the organoclay. SEM analysis confirmed the dispersion of nanoclay in TPU matrix. The mechanical properties of nanocomposites such as the tensile strength and Young's modulus of TPU/Cl25A nanocomposites were increased with increasing clay percentage. The gas permeability test was studied using a Membrane separation testing unit. Significant improvements in barrier properties were observed. A remarkable decrease was seen in polyurethane incorporated with 5 Wt.% organoclay when tested with oxygen and nitrogen gas.


Main Subjects

[2] Allami, T., Alamiery, A., Nassir, M.H., Kadhum, A.H., Investigating Physio-Thermo-Mechanical Properties of Polyurethane and Thermoplastics Nanocomposite in Various Applications, Polym. 13: 2467-2491 (2021).
[3] Khalifa M., Anandhan S., Wuzella G., Lammer H., Mahendran A., Thermoplastic Polyurethane Composites Reinforced with Renewable and Sustainable Fillers–A Review, Polym. Technol. Mater., 59: 1751-1769 (2020).
[4] Ali F., Ullah H., Ali Z., Rahim F., Khan F., Ur Rehman Z., Polymer-Clay Nanocomposites, Preparations and Current Applications: A Review, Current Nanomaterials., 1: 83–95 (2016).
[5] Chaitoglou S., Spachis L., Zisis G., Raptis I., Papanikolaou N., Vavouliotis A., Penedo R., Fernandes N., Dimoulas A., Layer-by-Layer Assembled Graphene Coatings on Polyurethane Films as He Permeation Barrier, Prog. Org. Coat., 150: 105984-105991 (2021).
[6] Merillas B., Villafañe F., Rodríguez-Pérez M.Á., Nanoparticles Addition in PU Foams: The Dramatic Effect of Trapped-Air on Nucleation, Polym. 13: 2952-2963 (2021).
[7] Gul S., Kausar A., Muhammad B., Jabeen S., Research Progress on Properties and Applications of Polymer/Clay Nanocomposite, Polym. Plast. Technol. Eng., 55: 684-703 (2016). 
[8] Samyn F., Bourbigot S., Jama C., Bellayer S., Fire Retardancy of Polymer Clay Nanocomposites: Is there an Influence of the Nanomorphology?, J. Polym. Degrad. Stab., 93: 2019-2024 (2008).
[9] Saliney T., Shaji T., Jiji A., Soney C.G., Sabu T., Investigation of the Mechanical, Thermal and Transport Properties of NR/NBR Blends: Impact of Organoclay Content, J. Polym. Res., 25: 165-175 (2018).
[10] Kiliaris P., Papaspyrides C.D., Polymer/Layered Silicate (Clay) Nanocomposites: An overview of Flame Retardancy, Prog. Polym. Sci., 35: 902-958 (2010).
[11] Skleničková K., Vlčková V., Abbrent S., Bujok S., Paruzel A., Kanizsová L., Trhlíková O., Říhová Ambrožová J., Halecký M.,  Beneš H., Open-Cell Aliphatic Polyurethane Foams with High Content of Polysaccharides: Structure, Degradation, and Ecotoxicity, ACS Sustainable Chem.Eng., 9: 6023-6032 (2021).
[12] Maji P.K., Das N.K., Bhowmick A.K., Preparation and Properties of Polyurethane Nanocomposites of Novel Architecture as Advanced Barrier Materials, Polym., 51: 1100-1110 (2010).
[14] Alhanish A., Abu Ghalia M., Biobased Thermoplastic Polyurethanes and Their Capability to Biodegradation, Eco-Friendly Adhesives for Wood and Natural Fiber Composites, Springer, 85-104 (2021).
[16] Salahuddin N., Abo-El-Enin S.A., Selim A., Salah El-Dien O., Synthesis and Characterization of Polyurethane/Organo-Montmorillonite Nanocomposite, Appl. Clay. Sci., 47: 242-48 (2010).
[17] Reddy G.V.R., Joshi M., Adak B., Deopura B.L., Studies on the Dyeability and Dyeing Mechanism of Polyurethane/Clay Nanocomposite Filaments with Acid, Basic and Reactive Dyes, Coloration. Technol., 134: 117-125 (2018).
[18] Stefanovic I.S., Spirkova M., Ostojic S., Stefanov P., Pavlovic V., Pergal M.V., Montmorillonite /Poly(Urethane-Siloxane) Nanocomposites: Morphological, Thermal, Mechanical and Surface Properties, Appl. Clay. Sci., 149: 136-146 (2017).
[19] Uhl F.M., Davuluri S., Wong S., Webster D., Organically Modified Montmorillonites in UV Curable Urethane Acrylate Films, Polym., 45: 175-187 (2004).
[20] Sariyeh P., Mohammad S., Farshad K., Mehrdad K., Polyethylene/Clay/Graphite Nanocomposites as Potential Materials for Preparation of Reinforced Conductive Natural Gas Transfer Pipes, Iran. J. Chem. Chem. Eng. (IJCCE), 39: 59-68 (2020).
[21] Marcano A., Fatyeyeva K., Koun M., Dubuis P., Grimme M., Marais S., Recent Development in the Field of Barrier and Permeability Properties of Segmented Polyurethane Elastomers, Rev. Chem. Eng., 35: 445-474 (2019).
[22] Herrera -Alonso J.M., Marand E., Little J.C., Cox S.S., Transport Properties in Polyurethane/Clay Nanocomposites as Barrier Materials: Effect of Processing Conditions, J. Membrane. Sci., 337: 208-214 (2009).
[23] Alobad Z.K., Albozahid M., Naji H.Z., Alrheem H.S., Saiani A., Influence of Hard Segments Content on Thermal, Morphological and Mechanical Properties of Homo and Co-Polyurethanes: A Comparative Study, Arch. Mater. Sci. Eng., 1: 5-16 (2021). 
[24] Kim H., Mitura Y., Mascosko C.W., Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity, Chem. Mater., 22: 3441-3450 (2010).
[25] Peretz Damari S., Cullari L., Nadiv R., Nir Y., Laredo D., Grunlan J., Regev O., Graphene Induced Enhancement of Water Vapor Barrier in Polymer Nanocomposites, Compos. B: Eng., 134: 218-224 (2018).
[26] Reza J., Behnam E., Hamed T., Effects of Cellular Morphology and Water Absorption Capacity of Poly(vinyl alcohol) Foam, Iran. J.Chem.Chem. Eng. (IJCCE), 36: 59-67 (2017).
[27] Amari A., Alzahrani F.M.A., Katubi K.M., Alsaiari N.S., Tahoon M.A., Rebah F.B., Herrera-Alonso., Marand E., Little J.C., Clay-Polymer Nanocomposites: Preparations and Utilization for Pollutants Removal, Materials., 14: 1365-1386 (2021).
[30] Behjat T., Najmeh R., Preparation and Characterization (Mechanical and Water Absorpion Properties) of CMC/PVA/Clay Nanocomposite Films, Iran. J. Chem. Chem. Eng. (IJCCE), 35: 9-15 (2016). 
[31] Ramesh S., Punithamurthy K., The Effect of Organoclay on Thermal and Mechanical Behaviours of Thermoplastic Polyurethane Nanocomposites, Dig. J. Nanomater. Biostruct., 12: 331-338 (2017).
[32] Zeng Q.H., Wang D.Z., Yu A.B., Lu G.Q., Synthesis of Polymer-Montmorillonite Nanocomposites by in situ Intercalative Polymerization, Nanotech., 13: 549-553 (2002).
[33] Rathi S., Dahiya J.B., Polyammide 66/Nanoclay Composites: Synthesis, Thermal and Flammability Properties, Adv. Mat. Lett., 3: 381-387 (2012).
[34] Rafiee M., Nitzsche F., Laliberte J., Hind S., Robitaille F., Labrosse MR., Thermal Properties of Doubly Reinforced Fiberglass/Epoxy Composites with Graphene Nanoplatelets, Graphene Oxide and Reduced-Graphene Oxide, Compos. B: Eng., 164: 1–9 (2019).
[35] Poornima Vijayan P., Debora P., Pournami V.P., Jose M., Thomas K.S., The Role of Clay Modifier on Cure Characteristics and Properties of Epoxy/Clay/ Carboxyl-Terminated Poly(butadiene-co-acrylonitrile) (CTBN) Hybrid, Materials Technology: Advance Performance Materials., 32: 171-77 (2017).
[36] Chandran N., Chandran S., Hanna J.M., Thomas S., Compatiblizing Action and Localization of Clay in a Polypropylene/Natural Rubber (PP/NR) Blend, RSC Adv., 5: 86265-86273 (2015).
[39] Mustapha K., Mederic P., Lynda Z., Grohens Y., Bruzaud S., Influence of Loading Rates on Morphology and Mechanical Properties of PLA/Clay Nanocomposites, Int. J. Microstructure and Materials Properties., 7: 390-399 (2012).
[41] Kalendova A., Merinska D., Gerard J. F., Slouf M., Polymer/Clay Nanocomposites and their Gas Barrier Properties, Polym. Compos., 34: 1418–1424 (2013).
[42] Goodarzi V., Jafari S.H., Khonakdar H.A., Ghalei B., Assessment of Role of Morphology in Gas Permselectivity of Membranes Based on Polypropylene/Ethylene Vinyl Acetate/Clay Nanocomposite, J. Memb. Sci., 445: 76-87 (2013).
[43] Wan J., Bi W., Liao X., Xiao H., Chen X., Chen J., Gas Diffusion in Polymer Nanocomposites: Role of Defects and Caves in Fillers, J. Polym. Res., 28: 368 (2021).