Electrochemical Sensor Based on Nanocomposite of Multi-Walled Carbon Nano-Tubes (MWCNTs)/TiO2/Carbon Ionic Liquid Electrode Analysis of Acetaminophen in Pharmaceutical Formulations

Document Type : Research Article


Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, I.R. IRAN


This study aimed at preparing a Carbon Ionic Liquid Electrode (CILE) modified with a new composite of Multi-Walled Carbon Nano-Tubes (MWCNTs) and TiO2 nanoparticles for AC determination. The proposed electrode was made of a Carbon Paste Electrode (CPE) modified with TiO2 Nano-Particle (NP)-decorated MWCNTs and a binder of IL 1-hexyl-pyridinium hexafluorophosphate (HPFP) (MWCNT/TiO2/CILE). The nanocomposite structure characterization was done via X-ray Energy-Dispersive Spectroscopy (EDS) and Field-Emission Scanning Electron Microscopy (FESEM). The electrochemical behavior of Ac was investigated via the Cyclic Voltammetry (CV) technique at the MWCNT/TiO2/CILE. The MWCNT/TiO2/CILE was applied for Ac determination by the Square-Wave Voltammetry (SWV) technique in real samples. The excellent electrocatalytic activity of the proposed nanocomposite leading to Ac electrochemical oxidation in phosphate buffer solution (pH 6.0) was evidenced. The results of Square-Wave Voltammetry (SWV) revealed a wide linear range of 0.01-30 µM and the detection limits of 0.003 µM for the modified electrode under optimal conditions. This electrode was successfully employed to detect Ac concentrations in plasma and tablet samples with good repeatability and reproducibility.


Main Subjects

[1] Wang S.F., Xie F., Hu R.F., Carbon-Coated Nickel Magnetic Nanoparticles Modified Electrodes as a Sensor for Determination of Acetaminophen, Sens. Actuators B Chem., 123: 495-500(2007)
[2] Kulkarni V.G., Gandhi S.V., Deshpande P.B.,  Divekar P., High Performance Thin Layer Chromatographic Analysis of Paracetamol and Etoricoxib in Spiked Human Plasma, J. Chem. Pharm. Res., 4: 1750-1755(2012).
[3] Vertzoni M.V., Archontaki H.A., Galanopoulou P., Development and Optimization of a Reversed-Phase High-Performance Liquid Chromatographic Method for the Determination of Acetaminophen and Its Major Metabolites in Rabbit Plasma and Urine after a Toxic Dose, J. Pharm. Biomed. Anal., 32: 487-493 (2003).
[5] Mohamed F.A., Abdallah M.A., Shammat S.M., Selective Spectrophotometric Determination of p-Aminophenol and Acetaminophen. Talanta, 44: 61-68(1997).
[6] Goyal R.N., Gupta V.K., Oyama M., Bachheti N., Differential Pulse Voltammetric Determination of Paracetamol at Nanogold Modified Indium Tin Oxide Electrode. Electrochem. Commun., 7: 803-807(2005).
[7] Shang Guan X., Zhang H., Zheng J., Electrochemical Behavior and Differential Pulse Voltammetric Determination of Paracetamol at a Carbon Ionic Liquid Electrode, Anal. Bioanal. Chem., 391: 1049-1055 (2008).
[10] Naddaf E., Abedi M.R., Zabihi M.S., Imani A., Electrocatalytic Oxidation of Ethanol and Ethylene Glycol onto Poly (o-Anisidine)-Nickel Composite Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 59-70 (2017).
[11] Xie, M., Su, R., Deng, O. A Recyclable Poly (ionic liquid) s Enzyme Reactor for Highly Efficient Protein Digestion, Iran. J. Chem. Chem. Eng. (IJCCE),. 37(3): 235-246 (2018).
[12] Rastegar M.H., Saber Tehrani M., Abroomand Azar P., Electrochemical Oxidation of Flavonoids and Interaction with DNA on the Surface of Supramolecular Ionic Liquid Grafted on Graphene Modified Glassy Carbon Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 37(3):117-125 (2018).
[14] Malek N., Safavi A., Tajabadi F., High-Performance Carbon Composite Electrode Based on an Ionic Liquid as a Binder, Anal. Biochem., 78: 3820-3826(2006).
[15] Tunckol M., Durand, J., Serp, P., Carbon Nanomaterial–Ionic Liquid Hybrids, Carbon, 50: 4303-4334 (2012).
[16] Tavana, T., Khalilzadeh, M.A., Karimi-Maleh, H., Ensafi, A.A., Beitollahi, H. and Zareyee, D., Sensitive Voltammetric Determination of Epinephrine in the Presence of Acetaminophen at a Novel Ionic Liquid Modified Carbon Nanotubes Paste Electrode, J MOL LIQ., 168:69-74 (2012).
[17] Valentini F., Roscioli D., Carbone M., Conte V., Floris B., Bauer E.M., Ditaranto N., Sabbatin, L., Caponetti E., Chillura-Martino D., Graphene and Ionic Liquids New Gel Paste Electrodes for Caffeic Acid Quantification, Sens Actuators B Chem, 212: 248-255(2015).
[21] Heli H., Majdi S., Jabbari A., Sattarahmady N., Moosavi-Movahedi A.A., Electrooxidation of Dextromethorphan on a Carbon Nanotube–Carbon Microparticle–Ionic Liquid Composite: Applied to Determination in Pharmaceutical Forms, J. Solid State Electr., 14: 1515-1523 (2010).
[23] Jacobs C.B., Peairs M.J., Venton B.J., Carbon Nanotube Based Electrochemical Ssensors for Biomolecules, Anal. Chim. Acta, 662:105-127(2010).
[25] Wardak, C., 2015Solid Contact Cadmium Ion-Selective Electrode Based on Ionic Liquid and Carbon Nanotubes, Sens Actuators B Chem, 209: 131-137 (2015).
[26] Kachoosangi R.T., Wildgoose G.G., Compton R.G., Room Temperature Ionic Liquid Carbon Nanotube Paste Electrodes: Overcoming Large Capacitive Currents Using Rotating Disk Electrodes,. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 19: 1483-1489(2007).
[27] Farjami, F., Fasihi, F., Alimohammadi, F. and Moradi, S.E., Electrochemical Behavior and Highly Sensitive Voltammetric Determination of Doxepin in Pharmaceutical Preparations and Blood Serum Using Carbon Ionic, Iran. J. Pharm. Res., 18: 91-101 (2019). 
[28] Sun W., Wang X., Zhu H., Sun X., Shi F., Li G. Sun Z., Graphene-MnO2 Nanocomposite Modified Carbon Ionic Liquid Electrode for the Sensitive Electrochemical Detection of Rutin, Sens. Actuators B Chem., 178:443-449(2013).
[30] Sun S., Gao L. Liu Y., Enhanced Dye-Sensitized Solar Cell Using Graphene-Photoanode Prepared by Heterogeneous Coagulation, Appl. Phys. Lett., 96: 083113 (2010).
[32] Bao S.J., Li C.M., Zang J.F., Cui X.Q., Qiao Y., Guo J., New Nanostructured TiO2 for Direct Electrochemistry and Glucose Sensor Applications, Adv. Funct. Mater., 18:591-599(2008).
[34] Kamil F., Hubiter K.A., Abed T.K., Al-Amiery A.A., Synthesis of Aluminum and Titanium Oxides Nanoparticles via Sol-Gel Method: Optimization for the Minimum Size, J. Nanosci. Nanotechnol, 37-39 (2015).
[35] Lv C.Z., Chen D., Cao Z., Liu F., Cao X.M., He J.L. Zhao W.Y., Highly Sensitive and Selective Determination of Dopamine Based on Ionic Liquid-Titanium Dioxide/Graphene Oxide Nanocomposite Modified Electrode, Int. J. Electrochem. Sci, 11:10107-10122(2016).
[36] Gupta S.M., Tripathi M., A Review of TiO2 Nanoparticles. Chinese Science Bulletin, 56: 1639-1657(2011).
[37] Salmanpour S., Tavana T., Pahlavan A., Khalilzadeh M.A., Ensafi A.A., Karimi-Maleh H., Beitollahi H., Kowsari E., Zareyee D., Voltammetric Determination of Norepinephrine in the Presence of Acetaminophen Using a Novel Ionic Liquid/Multiwall Carbon Nanotubes Paste Electrode, Mater. Sci. Eng. C, 32: 1912-1918(2012).
[38] Abo-Hamad A., AlSaadi M.A., Hayyan M., Juneidi I. Hashim M.A., Ionic Liquid-Carbon Nanomaterial Hybrids for Electrochemical Sensor Applications: A Review. Electrochimica Acta, 193: 321-343 (2016).
[39] Fukushima, T. and Aida, T., Ionic Liquids for Soft Functional Materials with Carbon Nanotubes, Chem.: Eur. J., 13: 5048-505 8(2007).
[40] Laviron E.J., Electroanal Chem Interfacial Electrochem. 164: 213. (b) Laviron EJ. Electroanal Chem Interfacial Electrochem, 169:29(1984).
[41] Bard, A.J., Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, s, 2: 482 (2001).
[43] Afkhami, A., Khoshsafar, H., Bagheri, H.  Madrakian, T., Facile Simultaneous Electrochemical Determination of Codeine and Acetaminophen in Pharmaceutical Samples and Biological Fluids by Graphene–CoFe2O4 …, Sensors and Actuators B: Chemical, 203:909-918(2014).
[45] Mazloum-Ardakani, M., Beitollahi, H., Amini, M.K., Mirkhalaf, F., Abdollahi-Alibeik, M., Simultaneous and Selective Voltammetric Determination of Epinephrine, Acetaminophen and Folic Acid at a ZrO2 Nanoparticles Modified Carbon Paste Electrode. Anal. Methods, 3: 673-677(2011).
[47] de Holanda L.F., Ribeiro F.W.P., Sousa C.P., da Silva Casciano P.N., de Lima-Neto P. Correia A.N.,  Multi-Walled Carbon Nanotubes–Cobalt Phthalocyanine Modified Electrode for Electroanalytical Determination of Acetaminophen, J. Electroanal. Chem., 772: 9-16 (2016).
[49] Yu S., Li H., Li G., Niu L., Liu W., Di X., Reduced Graphene Oxide-Supported Gold Dendrite for Electrochemical Sensing of Acetaminophen, Talanta, 184: 244-250. (2018).
[50] Alam A. U., Qin Y., Howlader M.M., Hu N.X., Deen M.J., Electrochemical Sensing of Acetaminophen Using Multi-Walled Carbon Nanotube and β-Cyclodextrin, Sen.s Actuators B Chem., 254: 896-909 (2018).
[51] Xu F., Ru H.Y., Sun L.X., Zou Y.J., Jiao C.L., Wang T.Y., Zhang J.M., Zheng Q., Zhou H.Y., A Novel Sensor Based on Electrochemical Polymerization of Diglycolic Acid for Determination of Acetaminophen, Biosens. Bioelectron, 38: 27-30 (2012).