Production and Characterization of Antibacterial Effective Nanofiber from TPU-Ag NPs and PLA Designed Using Coaxial Electrospinning for Potential Use in Wound Dressing

Document Type : Research Article

Authors

Polymer Science and Technology Department, Kocaeli University, Kocaeli, TURKEY

Abstract

In this study, a novel bicomponent nanomaterial has been designed to be used as an antibacterial effective wound dressing for dry wounds. These nanofibers' wound dressing successfully have been produced by coaxial electrospinning method feeding neat polylactic acid into the core and thermoplastic polyurethane-silver nanoparticles into the shell. In addition to examining the antibacterial and cytotoxicity properties of the designed polymeric nanomaterials, physical and chemical characterization studies have been also carried out. It has been determined that the 10% silver nanoparticles doped bicomponent nanomaterial had the thinnest smooth nanofibers with 1127 nm value, the highest hydrophobic behavior with 131° contact angle value, the highest tensile strength with 2.53 MPa value, and the highest flexibility with 66.84% value. In addition, 10% and 5% silver nanoparticles doped bicomponent nanofibers have been indicated to have high cell viability with values of about 90% and 80% respectively. It has been emphasized that these bicomponent electrospun mats, which have been improved for dry wounds can be used as a 100% antibacterial effective wound dressing against escherichia coli, staphylococcus aureus, and pseudomonas aeruginosa if it is renewed every 24 hours.

Keywords

Main Subjects


[1] Aziz T., Farid A., Haq F., Kiran M., Ullah A., Zhang K., Li C., Ghazanfar S., Sun H., Ullah R., Ali A., Muzammal M., Shah M., Akhtar N., Selim S., Hagagy N., Samy M., Al Jaouni S.K., A Review on the Modification of Cellulose and Its Applications, Polymers, 14(15): 3206-3215 (2022).
[2] Alharbi H., Luqman M., Khalil K., Elnakady Y.A., Abd-Elkader O., Rady A., Alharthi N., Karim M., Fabrication of Core-Shell Structured Nanofibers of Poly (Lactic Acid) and Poly (Vinyl Alcohol) by Coaxial Electrospinning for Tissue Engineering, European Polym. J., 98: 483-491 (2018).
[3] Alghoraibi I., Alomari S., “Different Methods for Nanofiber Design and Fabrication", Springer, (2018).
[4] Wang Q., Zhu L., Polymer Nanocomposites for Electrical Energy Storage, J. Polym. Sci. Part B: Polym. Phys., 49(20): 1421-1429 (2011).
[5] Kulkarni R.K., Pani K.C., Neuman C., Leonard F., Polylactic Acid for Surgical Implants, Arch. Surg., 93(5): 839-843 (1966).
[6] Aziz T., Ullah A., Ali A., Shabeer M., Shah M.N., Haq F., Iqbal M., Ullah R., Khan F.U., Manufactures of Bio‐Degradable and Bio‐Based Polymers for Bio‐Materials in the Pharmaceutical Field, J. Appl. Polym. Sci., 139(29): 52624-52634 (2022).
[7] Janik H., Marzec M., A Review: Fabrication of Porous Polyurethane Scaffolds, Mater. Sci. Eng: C., 48: 586–591 (2015).
[9] Sun B., Duan B., Yuan X., Preparation of Core/Shell PVP/PLA Ultrafine Fibers by Coaxial Electrospinning, J. Appl. Polym. Sci., 102(1): 39–45 (2006).
[10] Unnithan A.R., Sasikala A.R.K., Murugesan P., Gurusamy M., Wu D., Park C.H., Kim C.S Electrospun polyurethane-Dextran Nanofiber Mats Loaded with Estradiol for Post-Menopausal Wound Dressing, Int. J. Biol. Macromol. 77: 1-8 (2015).
[11] Dehcheshmeh M.A., Fathi M., Production of Core-Shell Nanofibers from Zein and Tragacanth for Encapsulation of Saffron Extract, Int. J. Biol. Macromol., 122: 272–279 (2018).
[12] Alippilakkottea S., Kumar S., Sreejith L., Fabrication of PLA/Ag Nanofibers by Green Synthesis Method Using Momordica Charantia Fruit Extract for Wound Dressing Applications, Collo. Surf. A: Phys. Eng. Asp., 529: 771-782 (2017).
[13] Lakshman L.R., Shalumon K., Nair S.V., Jayakumar R., Preparation of Silver Nanoparticles Incorporated Electrospun Polyurethane Nano-Fibrous Mat for Wound Dressing, J. Macromol. Sci. Part A: Pure Appl. Chem., 47(10): 1012–1018 (2010).
[14] Nguyen T.T.T., Chung O.H., Park J.S., Coaxial Electrospun Poly(Lactic Acid)/Chitosan (Core/Shell) Composite Nanofibers and their Antibacterial Activity, Carbohydr. Polym., 86(4): 1799–1806 (2011).
[16] Zeytuncu B., Morcali M.H., Fabrication and Characterization of Antibacterial Polyurethane Acrylate-Based Materials, Mat. Res., 18(4): 867-872 (2015).
[17] Hsu S., Tseng H.J, Lin Y.C., The Biocompatibility and Antibacterial Properties of Waterborne Polyurethane-Silver Nanocomposites, Biomaterials., 31(26): 6796-6808 (2010).
[18] Lan X., Liu Y., Wang Y., Tian F., Miao X., Wang H., Tang  Y., Coaxial Electrospun PVA/PCL Nanofibers with Dual Release of Tea Polyphenols and ε-POLY (L-Lysine) as Antioxidant and Antibacterial Wound Dressing Materials, Inter. J. Pharm., 601: 120525-120535 (2021).
[20] Wu J.Y., Ooi C.W., Song C.P., Wang C.Y., Liu B.L., Lin G.Y, Chiu C.Y., Chang Y.K., Antibacterial Efficacy of Quaternized Chitosan/Poly (Vinyl Alcohol) Nanofiber Membrane Crosslinked with Blocked Diisocyanate, Carbohydr. Polym., 262: 117910-117921 (2021).
[21] Ramakrishna S., Fujihara K., Teo W.E., Yong T., Ma Z., Ramaseshan R., Electrospun Nanofibers: Solving Global Issues, Mater. Today., 9(3): 40-50 (2006).
[22] Khwanmuang P., Naparswad C., Archakunakorn S., Waicharoen C., Chitichotpanya C., Optimization of in Situ Synthesis of Ag/PU Nanocomposites Using Response Surface Methodology for Self-Disinfecting Coatings, Prog. Org. Coat., 110: 104-113 (2017).
[23] Fukushima J., Yasuda K., Teratani H., Nishizaki S., Settling Behavior of Fillers in Thermosetting Epoxy Casting Resins During Cure, J. Appl. Polym. Sci., 22(6): 1701-1714 (1978).
[24] Jia W., Tchoudakov R., Joseph R., Narkis M., Siegmann A., The Conductivity Behavior of Multi‐Component Epoxy, Metal Particle, Carbon Black, Carbon Fibril Composites, J. Appl. Polym. Sci., 85(8): 1706-1713 (2002).
[26] Sayyar M., Soroushian P., Abdol N., Staggemeier K., Bakker M.G., Balachandra A.M., High Performance Pseudoelastic Metal Nanowire Reinforced Elastomeric Composite, Ind. Eng. Chem. Res., 53(34): 13329-13339 (2014).
[27] Pradhan K.C., Nayak P.L., Synthesis and Characterization of Polyurethane Nanocomposite from Castor Oil- Hexamethylene Diisocyanate (HMDI), Adv. Appl. Sci. Res., 3(5): 3045-3052 (2012).
[28] Feng F., Ye L., Morphologies and Mechanical Properties of Polylactide/Thermoplastic Polyurethane Elastomer Blends, J. Appl. Polym. Sci., 119(5): 2778-2783 (2010).
[29] Erbil H.Y., Demirel A.L., Avci Y., Mert O., Erbil H.Y., Demirel A.L., Avci Y., Mert O., Transformation of a Simple Plastic into a Superhydrophobic Surface, Science, 299(5611): 1377-1380 (2003).
[30] Krishna K., Harisha K.S., Neelakandan R., Fabrication and Conductivity Study of Silver Nanoparticles Loaded Polyvinyl Alcohol (PVA-AgNPs) Nanofibers, Mater. Today: Proceed., 42(2): 515-520 (2021).
[31] Chernousova S., Epple M., Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal, Chem. Int. Ed., 52(6): 1636–1653 (2013).
[32] Sun Z., Fan C., Tang X.,  Zhao J., Song Y., Shao Z., Xu L., Characterization and Antibacterial Properties of Porous Fibers Containing Silver Ions, Appl. Surf. Sci., 387: 828-838 (2016).
[33] Li R., Cheng Z., Yu X., Wang S., Han Z., Kang L., Preparation of Antibacterial PCL/PVP-AgNP Janus Nanofibers by Uniaxial Electrospinning, Mater. Lett., 254: 206-209 (2019).
[34] Momeni M., Asadi, S., Shanbedi M., Antimicrobial Effect of Silver Nanoparticles Synthesized with Bougainvillea Glabra Extract on Staphylococcus Aureus and Escherichia Coli, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 395-405 (2021).
[35] Ghorbani M., Ehsani Amoli A., Soleimani Lashkenari M., Polypyrrole/Silver Nanocomposite: Synthesis, Characterization and Antibacterial Activity, Iran. J. Chem. Chem. Eng., 38(3): 1-7 (2019).
[36] Zhang S., Ye J., Sun Y., Kang J., Liu J., Wang Y., Li Y., Zhang L., Ning G., Electrospun Fibrous Mat Based on Silver (I) Metal-Organic Frameworks-Polylactic Acid for Bacterial Killing and Antibiotic-Free Wound Dressing, Chem. Eng. J., 390: 124523-124533, (2020).
[37] Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O., A Mechanistic Study of the Antibacterial Effect of Silver İons on Escherichia Coli and Staphylococcus Aureus, J. Biom. Mater. Res., 52(4): 662-668 (2020).
[38] Movahedi M., Asefnejad A., Rafienia M., Khorasani M.T., Potential of Novel Electrospun Core-Shell Structured Polyurethane/Starch (Hyaluronic Acid) Nanofibers for Skin Tissue Engineering: In Vitro and in Vivo Evaluation, Int. J. Biol. Macromol., 146: 627-637 (2020).