Chitosan Nanoparticle - Montmorillonite - Titanium dioxide Nanocomposites: Synthesis, Characterization, and Antimicrobial Activity

Document Type : Research Article

Authors

1 Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi - 627412, INDIA

2 Sri Paramakalyani College, Manonmaniam Sundaranar University, Alwarkurichi – 627412, INDIA

Abstract

In recent years, a strong interest has emerged in hybrid composites and their potential uses, especially in Chitosan Nanoparticle – MontMorillonite - Titanium dioxide - (CSNP – MMT - TiO2) composites, which have interesting technological properties and applications. Using the Precipitation Method, Chitosan Nanoparticles with TiO2 Nanocomposite (CSNP – MMT - TiO2 Nanocomposite) was created. Analysis using Scanning Electron Microscopy (SEM) revealed that the modified TiO2 Nanocomposite was successfully dispersed into the Chitosan matrix and that the roughness of the Chitosan Nanoparticle - MMT- TiO2 Nanocomposites were significantly reduced. Moreover, X-Ray Diffraction (XRD) and Fourier Transform InfraRed (FT-IR) spectroscopy analyses indicated that the Chitosan interacted with TiO2 Nanocomposite and possessed good compatibility, while a ThermoGravimetric Analysis (TGA) of the thermal properties showed that the Chitosan-MMT-TiO2 Nanocomposites with 0.05% TiO2 Nanocomposite concentration had the best thermal stability. The Chitosan- MMT-TiO2 Nanocomposite exhibited an inhibitory effect on the growth of gram-positive and gram-negative microorganisms.

Keywords

Main Subjects


[1] Alagumuthu G., Kumar T.A., Synthesis and Characterization of Chitosan/TiO2 Nanocomposites Using Liquid Phase Deposition Technique, International Journal of NanoScience and Nanotechnology, 4(1): 105-111 (2013).
[2] Bard A.J., “Integrated Chemical Systems: A Chemical Approach to Nanotechnology”, John Wiley & Sons Inc., ISBN: 978-0-471-00733-3,342 (1994).
[3] Karaca S., Onal E.C., Acıslı O., Khataee A., Preparation of Chitosan Modified Montmorillonite Biocomposite for Sonocatalysis of Dyes: Parameters and Degradation Mechanism, Materials Chemistry and Physics, 260: 124-125 (2021).
[4] Alshammari M.S., Essawy A.A., El-Nggar A.M., Sayyah S.M., Ultrasonic-Assisted Synthesis and Characterization of Chitosan-Graft-Substituted Polyanilines: Promise Bio-Based Nanoparticles for Dye Removal and Bacterial Disinfection, Journal of Chemistry, 32: 97-184 (2020).
[5] Abdel Aziz M.S., Naguib H.F., Saad G.R., Nanocomposites Based on Chitosan-Graft-Poly(N-Vinyl-2-Pyrrolidone): Synthesis, Characterization, and Biological Activity, International Journal of Polymeric Materials and Polymeric Biomaterials, 64: 578–586 (2015).
[6] Liu N., Chen X.G., Park H.J., Liu C.G., Liu C.S., Meng X.H., Yu L.J., Effect of MW and Concentration of Chitosan on Antibacterial Activity of Escherichia coli, Carbohydrate Polymers, 64: 60–65 (2006).
[7] Jong-Whan Rhim., Seok-In Hong, Hwan-Man Park., Ng P.K.W., Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity, ACS Publications, 54: 16, 5814–5822 (2006).
[8] Peh K., Khan T., Chang H., Mechanical, Bioadhesive Strength and Biological Evaluations of Chitosan Films for Wound Dressing, J. Pharm. Pharm. Sci., 3: 303–311 (2000).
[9] Shabunin A.S., Yudin V.E., Dobrovolskaya I.P., Zinovyev E.V., Zubov V., Ivan’kova E.M., Morganti P., Composite Wound Dressing Based on Chitin/Chitosan Nanofibers: Processing and Biomedical Applications, Cosmetics, 6: 16 (2019).
[10] Rehan M., El-Naggar M.E., Mashaly H.M., Wilken R., Nanocomposites Based on Chitosan/silver/clay for Durable Multi-Functional Properties of Cotton Fabrics, Carbohydr. Polym., 182: 29–41(2018).
[11] Chandrasekaran M., Kim K.D., Chun S.C., Antibacterial Activity of Chitosan Nanoparticles: A Review, Processes, 8: 1173 (2020).
[12] Preethi S., Abarna K., Nithyasri M., Kishore P., Deepika K., Ranjith Kumar R., Bhuvaneshwari V., Bharathi D., Synthesis and Characterization of Chitosan/Zinc Oxide Nanocomposite for Antibacterial Activity onto Cotton Fabrics and Dye Degradation Applications, International Journal of Biological Macromolecules, 164: 2779–2787(2020).
[13] Qi L., Xu Z., Jiang X., Hu C., Zou X., Qi L., Xu Z., Jiang X., Hu C., Zou X., Preparation and Antibacterial Activity of Chitosan Nanoparticles, Carbohydrate Research, 339: 2693–700(2004).
[14] Pasaribu S.P., Kaban J., Ginting M., Sinaga K.R., Synthesis and Evaluation Antibacterial Activity of Phosphate Buffer Solution (pH 7.4) - Soluble Acylated Chitosan Derivative, AIP Conference Proceedings, 2049: 020-025(2018).
[15] Habiba U., Joo T.C., Shezan S.K.A., Das R., Ang B.C., Afifi A.M., Synthesis and Characterization of Chitosan/TiO2 Nanocomposite for Adsorption of Congo Red, DWT, 164: 361–367(2019).
[16] Taspika M., Desiati R.D., Mahardika M., Sugiarti E., Abral H., Influence of TiO2/Ag Particles on the Properties of Chitosan Film, Adv. Nat. Sci: Nanosci. Nanotechnol, 11: 015-017(2020).
[17] Zafar N., Uzair B., Niazi M.B.K., Sajjad S., Samin G., Arshed M.J., Rafiq S., Fabrication & Characterization of Chitosan Coated Biologically Synthesized TiO2 Nanoparticles against PDR E. coli of Veterinary Origin, Advances in Polymer Technology, 84: 56024 (2020).
[18] Bhumkar D.R., Pokharkar V.B., Studies on Effect of pH on Cross-Linking of Chitosan with Sodium Tripolyphosphate: A Technical Note, AAPS PharmSciTech, 7: p. E138–E143(2006).
[19] Paluszkiewicz C., Stodolak E., Hasik M., Blazewicz M., FT-IR Study of Montmorillonite–Chitosan Nanocomposite Materials, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79: 784–788 (2011).
[20] Akbari B., Tavandashti M.P., Zandrahimi M., Particle Size Characterization of Nanoparticles – A Practical Approach, 8: 9(2011).
[21] Khedr M.A., Waly A.I., Hafez A.I., Ali H., Synthesis of Modified Chitosan - Montmorillonite Nanocomposite, Australian Journal of Basic and Applied Sciences, 6(6): 216-226 (2012).
 [22] Anaya-Esparza L.M., Ruvalcaba-Gómez J.M., Maytorena-Verdugo C.I., González-Silva N., Romero-Toledo R., Aguilera-Aguirre S., Pérez-Larios A., Montalvo-González E., Chitosan-TiO2: A Versatile Hybrid Composite, Materials, 13: 811 (2020).
[23] Alba M.D., Cota A., Osuna F.J., Pavón E., Perdigón A.C., Raffin F., BioNanocomposites Based on Chitosan Intercalation in Designed Swelling High-Charged Micas, Sci. Rep., 9: 10265 (2019).
[24] Ali S.W., Joshi M., Rajendran S., Synthesis and Characterization of Chitosan Nanoparticles with Enhanced Antimicrobial Activity, Int. J. Nanosci, 10: 979–984 (2011).
[25] Cremar L., Gutierrez J., Martinez J., Materon L., Gilkerson R., Xu F., Lozano K., Development of Antimicrobial Chitosan Based Nanofiber Dressings for Wound Healing Applications, Nanomedicine Journal, 5: 6–14 (2018).
[37] Jayrajsinh S., Shankar G., Agrawal YK., Bakre L., Montmorillonite Nanoclay as a Multifaceted Drug-Delivery Carrier: A Review, J. Drug Deliv. Sci. Technol., 39: 200-209 (2017).
[38] Shunmugasamy VC., Xiang C., Gupta N., Clay/polymer Nanocomposites: Processing, Properties, and Applications, In: Kim C.-S., Randow C., Sano T., (Editors). “Hybrid and Hierarchical Composite Materials”. Springer International Publishing; p. 161200 (2015).
[39] Müller K., Bugnicourt E., Latorre M., Jorda M., Echegoyen Sanz Y., Lagaron JM., et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and their Applications in the Packaging, Automotive and Solar Energy Fields, Nanomaterials 7(4): 74 (2017).