Electrochemical Determination Venlafaxine at NiO/GR Nanocomposite Modified Carbon Paste Electrode

Document Type : Research Article


1 Department of Clinical Laboratory, Al Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, I.R. IRAN

2 Department of Chemistry, University of Isfahan, Isfahan, I.R. IRAN

3 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN


The electro-oxidation of venlafaxine (VEN) was investigated at a carbon paste electrode, the modified electrode by NiO/graphene reduce (GR) nanocomposite. The structure and morphological aspects of the nanocomposite were approved using FE-SEM, EDAX, and FT-IR. The electrode reaction process was a diffusion-controlled one and the electrochemical oxidation involved two electrons transferring and two protons participating. Under the optimized conditions, the electro-oxidation peak currents were linearly dependent on the concentration of VEN in the concentration range from 1.0- 40.0 μM with the limit of detection (S/N=3) as 0.05 μM. The proposed method has been successfully applied in the electrochemical quantitative determination of VEN content in real samples and the determination, results could meet the requirement of the quantitative determination.


Main Subjects

[1] Stahl S.M., Grady M.M., Moret C.,  Briley M., SNRIs: Their Pharmacology, Clinical Efficacy, and Tolerability in Comparison with other Classes of Antidepressants, CNS Spectr., 10: 732-747 (2005).
[2] Bauer M., Tharmanathan P., Volz H.P., Moeller H.J., Freemantle N., The Effect of Venlafaxine Compared with other Antidepressants and Placebo in the Treatment of Major Depression: A Meta-Analysis, Eur. Arch. Psychiatry Clin. Neurosci., 259: 172-185 (2009).
[3] Mansour M.F., El-Moety M.M.A., El Kady E.F., El Guindi N.M., Schepdael A.V., Aly S.M., Venlafaxine Determination in Pharmaceutical Formulation and Serum by Ion-Selective Electrodes, Curr. Pharm. Des., 24(22): 2625-2630 (2018).
[4] Ebert K., Maurice E., Lukacin R., Fleischhaker C., Schulz E., Ebert D., Clement H.W., Serum and Saliva Concentrations of Venlafaxine, O-desmethylvenlafaxine, Quetiapine, and Citalopram in Psychiatric Patients, Ther. Drug Monit., 40(3): 351-355 (2018).
[5] Li C., Liu F., Peng H., Huang Y., Song X., Xie Q., Liu Y., The Positive Effect of Venlafaxine on Central Motor Conduction, Clin. Neurol. Neurosurg., 167: 65-69 (2018).
[7] Alaiyed S., Bozzelli P. L., Caccavano A., Wu J.Y., Conant K., Venlafaxine Stimulates PNN Proteolysis and MMP‐9‐Dependent Enhancement of Gamma Power; Relevance to Antidepressant Efficacy, J. Neurochem., 148(6): 810-821 (2019).
[9] Asafu-Adjaye E.B., Faustino P.J., Tawakkul M.A., Anderson L.W., Lawrence X.Y., Kwon H., Volpe D.A., Validation and Application of a Stability-Indicating HPLC Method for the in Vitro Determination of Gastric And Intestinal Stability of Venlafaxine, J. Pharm. Biomed. Anal., 43(5): 1854-1859 (2007).
[10] Raut B.B., Kolte B.L., Deo A.A., Bagool M.A., Shinde D.B., A Rapid and Sensitive HPLC Method for the Determination of Venlafaxine and O‐Desmethylvenlafaxine in Human Plasma with UV Detection, J. Liq. Chromatogr. Relat. Technol., 26(8): 1297-1313 (2003).
[14] Vu R.L., Helmeste D., Albers L., Reist C., Rapid Determination of Venlafaxine and O-Desmethylvenlafaxine in Human Plasma by High-Performance Liquid Chromatography with Fluorimetric Detection, J. Chromatogr. B: Biomed. Sci. Appl., 703(1-2): 195-201 (1997).
[19] Shah G.R., Thaker B.T., Surati K.R., Parabia M.H., Simultaneous Determination of Venlafaxine and its Main Active Metabolite O-desmethyl Venlafaxine in Rat Plasma by LC-MS/MS, Anal. Sci., 25(10): 1207-1210 (2009).
[20] Favretto D., Stocchero G., Vogliardi S., Frison G., Trevisanuto D., Castagna F., Ferrara S. D., Neonatal Hair Analysis by Liquid Chromatography-High-Resolution Mass Spectrometry to Reveal Gestational Exposure to Venlafaxine, Ther. Drug Monit., 32(1): 30-39.
[21] Makhija S.N., Vavia P.R., Stability Indicating LC Method for the Estimation of Venlafaxine in Pharmaceutical Formulations, J. Pharm. Biomed. Anal., 28(6): 1055-1059 (2002).
[22] Bernardi L.S., Oliveira P.R., Murakami F.S., Borgmann S.H., Arend M.Z., Cardoso S.G., Development and Validation of a Stability-Indicating lc Method for the Determination of Venlafaxine in Extended-Release Capsules and Dissolution Kinetic Studies., J. Chromatogr. Sci., 47(9): 770-776 (2009).
[23] Sundaraganapathy R., Jambulingam M., Thangadurai S.A., Development and Validation of UV Spectrophotomeric Method for the Determination of Venlafaxine Hydrochloride in Bulk and Solid Dosage Forms, Int. J. Pharm. Ind. Res, 1(1): 28-31 (2011).
[26] Vidyavathi M., Krishna D. R., Prasad K. V. S. R. G., Vidyasagar J., Rapid HPLC Determination of Venlafaxine In Microbial Biotransformation Studies, Curr. Trends Biotechnol. Pharm., 3(1): 64-70 (2009).
[27] Morais S., Ryckaert C. P., Delerue-Matos C., Adsorptive Stripping Voltammetric Determination of Venlafaxine In Urine with a Mercury Film Microelectrode, Anal. Lett., 36(11): 2515-2526 (2003).
[28] Beitollahi H., Jahani Sh., Tajik S., Ganjali M.R., Faridbod F., Alizadeh T., Voltammetric Determination of Venlafaxine as an Antidepressant Drug Employing Gd2O3 Nanoparticles Graphite Screen Printed Electrode, J. Rare Earths, 37(3): 322-328 (2019).
[29] Qian Y., Ma C., Zhang S., Gao J., Liu M., Xie K., Song H., High Performance Electrochemical Electrode Based on Polymeric Composite Film for Sensing of Dopamine and Catechol, Sens. Actuators, B, 255: 1655-1662 (2018).
[33] Gupta V., Al Khayat M., Minocha A., Kumar P., Zinc (II)-Selective Sensors Based on Dibenzo-24-Crown-8 in PVC Matrix, Anal. Chim. Acta, 532(2): 153-158 (2005).
[34] Gupta V.K., Atar N., Yola M.L., Üstündağ Z., Uzun L., A Novel Magnetic Fe@ Au Core–Shell Nanoparticles Anchored Graphene Oxide Recyclable Nanocatalyst for the Reduction of Nitrophenol Compounds, Water Res., 48: 210-217 (2014).
[35] Torkzadeh-Mahani R., Foroughi M. M., Jahani Sh., Kazemipour M., Nadiki H. H., The Effect of Ultrasonic Irradiation on the Morphology of NiO/Co3O4 Nanocomposite and its Application to the Simultaneous Electrochemical Determination of Droxidopa and Carbidopa, Ultrason. Sonochem., 56: 183-192 (2019).
[36] Yogeswaran U., Shen-Ming Chen S. M., A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material, Sensors, 8: 290–313 (2008).
[37] Aramesh-Boroujeni Z., Bordbar A.-K., Khorasani-Motlagh M., Fani N., Sattarinezhad E., and Noroozifar M., Computational and Experimental Study on the Interaction of Three Novel Rare Earth Complexes Containing 2, 9-dimethyl-1, 10-Phenanthroline with Human Serum Albumin, J. Iran. Chem. Soc., 15(7): 1581-1591 (2018).
[38] Aramesh-Boroujeni Z., Bordbar A.-K., Khorasani-Motlagh M., Sattarinezhad E., Fani N., Noroozifar M., Synthesis, Characterization, and Binding Assessment with Human Serum Albumin of Three Bipyridine Lanthanide (III) Complexes, J. Biomol. Struct. Dyn., 37(6): 1438-1450 (2019).
[39] Aramesh-Boroujeni Z., Jahani S., Khorasani-Motlagh M., Kerman K., Aramesh N., Asadpour S., Noroozifar M., Experimental and Theoretical Investigations of Dy(III) Complex with 2,2′-Bipyridine Ligand: DNA and BSA Interactions and Antimicrobial Activity Study, J. Biomol. Struct. Dyn.: 1-18 (2019).
[40] Aramesh-Boroujeni Z., Jahani S., Khorasani-Motlagh M., Kerman K., and Noroozifar M., Evaluation of DNA, BSA Binding, DNA Cleavage and Antimicrobial Activity of Ytterbium(III) Complex Containing 2,2'-Bipyridine Ligand, J. Biomol. Struct. Dyn., 38(6): 1711-1725 (2020).
[42] Aramesh-Boroujeni Z., Khorasani-Motlagh M.,  Noroozifar M., Multispectroscopic DNA-Binding Studies of a Terbium (III) Complex Containing 2, 2′-Bipyridine Ligand, J. Biomol. Struct. Dyn., 34(2): 414-426 (2016).
[43] Kondori T., Shahraki O., Akbarzadeh-T N.,  Aramesh-Boroujeni Z., Two Novel Bipyridine-based Cobalt (II) Complexes: Synthesis, Characterization, Molecular Docking, DNA-Binding and Biological Evaluation, J. Biomol. Struct. Dyn.: 1-27 (2020).
[44] Yan S.-R., Foroughi M.M., Safaei M., Jahani S., Ebrahimpour N., Borhani F., Rezaei Zade Baravati N., Aramesh-Boroujeni Z., Foong L.K., A Review: Recent Advances in Ultrasensitive and Highly Specific Recognition Aptasensors with Various Detection Strategies, Int. J. Biol. Macromol., 155: 184-207 (2020).
[45] Jain A.K., Gupta V.K., Sahoo B.B., Singh L.P., Copper (II)-Selective Electrodes Based on Macrocyclic Compounds, Anal. Proc., 32: 99-101 (1995).
[46] Gupta V., Nayak A., Agarwal S., Singhal B., Recent Advances on Potentiometric Membrane Sensors for Pharmaceutical Analysis, Comb. Chem. High Throughput Screening, 14(4): 284-302 (2011).
[47] Rajaei M., Foroughi M.M., Jahani Sh., Shahidi ZandimM., Hassani Nadiki H., Sensitive detection of Morphine in the Presence of Dopamine with La3+ Doped Fern-Like CuO Nanoleaves/MWCNTs Modified Carbon Paste Electrode, J. Mol. Liq., 284: 462-472 (2019).
[48] Gupta V.K., Singh L., Singh R., Upadhyay N., Kaur S., Sethi B., A Novel Copper (II) Selective Sensor Based On Dimethyl 4, 4′(o-phenylene) bis (3-thioallophanate) in PVC Matrix, J. Mol. Liq., 174: 11-16 (2012).
[49] Karimi-Maleh H., Tahernejad-Javazmi F., Atar N., Yola M.L., Gupta V.K., Ensafi A.A., A Novel DNA Biosensor Based on a Pencil Graphite Electrode Modified with Polypyrrole/Functionalized Multiwalled Carbon Nanotubes for Determination of 6-Mercaptopurine Anticancer Drug, Ind. Eng. Chem. Res., 54(14): 3634-3639 (2015).
[51] Gupta V.K., Singh A.K., Kumawat L.K., Thiazole Schiff Base Turn-on Fluorescent Chemosensor for Al3+ Ion, Sens. Actuators, B, 195: 98-108 (2014).
[52] Karthikeyan S., Gupta V., Boopathy R., Titus A., Sekaran G., A New Approach for the Degradation of High Concentration of Aromatic Amine by Heterocatalytic Fenton Oxidation: Kinetic and Spectroscopic Studies, J. Mol. Liq., 173: 153-163 (2012).
[54] Gupta V.K., Sethi B., Sharma R.A., Agarwal S., Bharti A., Mercury Selective Potentiometric Sensor Based on Low Rim Functionalized Thiacalix [4]-Arene as a Cationic Receptor, J. Mol. Liq., 177: 114-118 (2013).
[55] Srivastava S.K., Gupta V.K., Dwived M.K., Jain S., Caesium PVC–Crown (dibenzo-24-crown-8) Based Membrane Sensor, Anal. Proc., 32: 21-23 (1995).
[58] Srivastava S.K., Gupta V.K., Jain S., PVC-Based 2, 2, 2-cryptand sensor for Zinc Ions, Anal. Chem., 68(7): 1272-1275 (1996).
[59] Gupta V.K., Karimi-Maleh H., Sadegh R., Simultaneous Determination of Hydroxylamine, Phenol and Sulfite in Water and Waste Water Samples Using a Voltammetric Nanosensor, Int. J. Electrochem. Sci, 10: 303-316 (2015).
[60] Sayah A., Habelhames F., Bahloul A., and Ghalmi Y., Capacitance Properties of Electrochemically Synthesised Polybithiophene-Graphene Exfoliated Composite Films, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(3): 201-210 (2019).
[61] Gupta V.K., Mergu N., Kumawat L.K., Singh A.K., Selective Naked-Eye Detection of Magnesium (II) Ions Using a Coumarin-Derived Fluorescent Probe, Sens. Actuators, B, 207: 216-223 (2015).
[62] Yola M.L., Gupta V.K., Eren T., Şen A.E., Atar N., A Novel Electro Analytical Nanosensor Based on Graphene Oxide/Silver Nanoparticles for Simultaneous Determination of Quercetin And Morin, Electrochim. Acta, 120: 204-211 (2014).
[63] Gupta V.K., Ganjali M., Norouzi P., Khani H., Nayak A., Agarwal S., Electrochemical Analysis of Some Toxic Metals by Ion–Selective Electrodes, Crit. Rev. Anal. Chem., 41(4): 282-313 (2011).
[65] Gupta V.K., Neutral Carrier and Organic Resin Based Membranes as Sensors for Uranyl Ions, Anal. Proc., 32: 263-266 (1995).
[66] Gupta V.K., Determination of Lead Using a Poly (vinyl chloride)-Based Crown Ether Membrane, Analyst, 120(2): 495-498 (1995).
[68] Gupta V.K., Kumar P., Cadmium (II)-selective Sensors Based on Dibenzo-24-Crown-8 in PVC Matrix, Anal. Chim. Acta, 389(1-3): 205-212 (1999).
[69] Gupta V.K., Kumar S., Singh R., Singh L., Shoora S., Sethi B., Cadmium (II) Ion Sensing Through p-tert-butyl calix [6] Arene Based Potentiometric Sensor, J. Mol. Liq., 195: 65-68 (2014).
[70] Gupta V.K., Karimi-Maleh H., Sadegh R., Simultaneous Determination of Hydroxylamine, Phenol and Sulfite in Water and Waste Water Samples Using a Voltammetric Nanosensor. Int. J. Electrochem. Sci, 10: 303-316 (2015).
[71] Goyal, R.N., Gupta V.K., Sangal A., Bachheti N., Voltammetric Determination of Uric Acid a a Fullerene‐C60‐Modified Glassy Carbon Electrode. Electroanalysis, 17(24): 2217-2223 (2005).
[72] Pajooheshpour N., Rezaei M., Hajian A., Afkhami A., Sillanpää M., Arduini F., Bagheri H., Protein Templated Au-Pt Nanoclusters-Graphene Nanoribbons as a High Performance Sensing Layer for the Electrochemical Determination of Diazinon, Sens. Actuators, B, 275: 180-189 (2018).
[73] Shahriary L., Athawale A.A., Graphene Oxide Synthesized by Using Modified Hummers Approach, Int J Renew Energy Environ Eng, 2(1): 58-63 (2014).
[75] Qiu P., Liu C., Lin D., Zeng G., Behaviour and Quantification Studies of Venlafaxine Using Differential Pulse Stripping Voltammetric in Capsules, Asian J. Chem., 25(16): 8943-8945 (2013).
[76] Ding L., Li L., You W., Gao Z.-N., Yang T.-L., Hilali M., Anodic Oxidation of Methylene Blue Dye from Aqueous Solution Using SnO2 Electrode, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(5): 175-184 (2019).