Comparative Study on Structuring and Photocatalytic Activity of Nano Titania Embossed with Organic Extracts

Document Type : Research Article


R.M.K. College of Engineering and Technology, Puduvoyal, P.R. CHINA


Several extensive research studies have explored the advantages of green templates in the synthesis of structure and morphology-controlled photocatalytic nanomaterials. This study compares the potential aspect of Zingiber rhizome Extract (ZE) and Tapioca Starch (TS) extract in modifying the surface and optical properties of Titania NanoParticles (TNP) synthesized by the sol-gel technique. The synthesized nanocatalysts were characterized using various physicochemical techniques. While zingiber extract promotes effectively favored the formation of dual anatase and rutile phases, tapioca extract ended with single anatase phase titania, which was examined for the degradation of Congo red in the presence of sunlight. The photo mineralization and recyclability of catalysts have been evaluated through Total Organic Content analysis. The easy recovery and reusability of biosynthesized nanocatalysts with good control over the grain size, enable them to be an implicit novel green template in the successful synthesis of photoactive mesoporous nano titania.


Main Subjects

[1] Poulios I., Aetopoulou I., Photocatalytic Degradation of the Textile Dye Reactive Orange 16 in the Presence of TiO2 Suspensions, Environ. Technol., 20(5): 479-487 (1999).
[3] Zuorro A., Lavecchia R., Michela Monaco M., Iervolino G., Vaiano V., Photocatalytic Degradation of Azo Dye Reactive Violet 5 on Fe-Doped Titania Catalysts under Visible Light Irradiation, Catalyst, 9: 645 (2019).
[4] Gautam A., Kshirsagar A., Biswas R., Banerjee S., Khanna P.K., Photodegradation of organic dyes based on anatase and rutile TiO2nano particles, RSC Adv., 6(4): 2746-2759 (2016).
[5] Khan M.A., Jung H.T., Yang O.B, Synthesis and Characterization of Ultrahigh Crystalline TiO2Nanotubes, J. Phys. Chem. B.,11: 6626–6630 (2006).
[6] Yan J., Wu G., Guan N., Li L., Li Z., Cao X., Understanding the Effect of Surface/Bulk Defects on the Photocatalytic Activity of TiO2: Anatase Versus Rutile, Phys. Chem. Chem. Phys., 15(26): 10978–10988(2013).
[7] Kang O.L., Ahmad A., Rana U.A., Hassan N.H., Sol-Gel Titanium Dioxide Nano Particles: Preparation and Structural Characterization, J. Nanotechnol., 5375939(7): 1-7 (2016).
[8] Abdel-Azim S. M., Aboul-Gheit A. K., Ahmed S. M., Preparation and Application of Mesoporous Nano Titania Photocatalysts Using Different Templates and pH Media, Int. J. Photoenergy, 687597(2014): 1-12 (2014).
 [9] Dhabbe R., Kadam A., Korake P., Kokate M., Waghmare P., Garadkar K., Synthesis and enhanced Photocatalytic Activity of Zr-Doped N-TiO2 Nanostructures, J. Mater. Sci. Mater. Electron, 26(2015): 554–563 (2015).
[10] Mogal S.I., Mishra M., Gandhi V.G., Tayade R.I., Metal Doped Titanium Dioxide: Synthesis and Effect of Metal Ion on Physio-Chemical and Photocatalytic Properties, Mater. Sci. Forum., 734(2013): 364–378 (2013).
[11] Balaganapathi T., Kaniamuthan B., Vinoth S., Thilakan P., PEG Assisted Synthesis of Porous TiO2Using Sol-Gel Processing and its Characterization Studies, Mat. Chem. Phys., 189(2017): 50-55 (2017).
[13] Marien C. B. D., Marchal C., Koch A., Robert D., Drogui P, Sol-Gel Synthesis of TiO2 Nano Particles: Effect of Pluronic P123 on Particle’s Morphology and Photocatalytic Degradation of Paraquat, Environ. Sci. Pollut. Res., 24(14): 12582-12588 (2017).
[14] Nursam N.M., Wang X, Tan J.Z.Y., Caruso R.A., Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal, ACS Appl. Mater. Interfaces, 8(27): 17194-17204 (2016).
 [15] Maiyalagan T., Viswanathan B., Varadaraju U .V., Fabrication and Characterization of Uniform TiO2 Nanotube Arrays by Sol-Gel Template Method, Bull Mater Sci., 29(7): 705–708 (2006).
[16] Hamdena Z., Bouattoura S., Ferrariab A.M., Ferreirab D.P., Vieira Ferreirab L.F., Botelho do Regob A.M., Boufi S., In Situ Generation of TiO2Nano Particles Using Chitosan as a Template and their Photocatalytic Activity, J. Photochem.. Photobiol. A: Chemistry, 321(1): 211-222 (2016).
[18] Darroudi M., Sabouri Z., Kazemi Oskuee Khorsand Zak R.A., Kargar H., Hamid M.H.N.A., Sol-Gel Synthesis, Characterization, and Neurotoxicity Effect of Zinc Oxide Nano Particles Using Gum Tragacanth, Ceram. Int., 8: 9195– 9199 (2013).
[19] LiX., Shi X., Wang L., Liu F., Synthesis of Bio Morphological Mesoporous TiO2 Templated by Mimicking Bamboo Membrane in Supercritical CO2, J. Colloid Interface Sci.,315(1): 230–236 (2007).
[20]Ramimoghadam D., Bin Hussein M. Z., Taufiq-Yap Y.H., Hydrothermal Synthesis of Zinc Oxide Nano Particles Using Rice as Soft Biotemplate, Chem. Cent. J.,7(1): 36 (2013).
[21] Jolad S.D, Lantz R.C., Chen G.J., Bates R.B., Timmermann B.N, Commercially Processed Dry Ginger (Zingiberofficinale): Composition and Effects on LPS-Stimulated PGE2 Production, Phytochem., 66(13): 1614-1613 (2005).
[22] Shalaby T.I., Mahamoud O.A., E.I Batouti G.A., Ibrahim E.E., Green Synthesis of Silver Nano Particles: Synthesis, Characterization and Antibacterial Activity, Nanosci. Nanotechnol. Lett., 5(2): 23-29 (2015).
[23] Velmurugan P., Anbalagan K., Manosathyadevan M.,  Lee K.J, Min Cho, Lee S.M, Park J.H , Green Synthesis of Silver and Gold Nano Particles Using ZingiberOfficinale Root Extract and Antibacterial Activity of Silver Nano Particles Against Food Pathogens, Bioproc. Biosyst. Eng.,37(10): 1935-1943 (2014).
[24] Singh C., Sharma V., Naik P.K, Kandhelwal V., Singh H.,  A Green Biogenic Approach for Synthesis of Gold and Silver Nano ParticlesUsing Zingiberofficinale, Dig. J. Nanomater. Bios, 6: 535-542 (2011).
[25] Zailani H., Mohd-Zin N.S., Mohd-Salleh S.N.A., Rashim M.F., A Comparison of Tapioca Peel and Tapioca Flour as a Natural Coagulant in Leachate Treatment,J. Appl. Geosci Built Environ.,2(1): 1-6 (2020).
[26] Ramasami A K., Naika H.R., Nagabhushana H., Ramakrishnappa T., Tapioca Starch: An Efficient Fuel in Gel-Combustion Synthesis of Photocatalytically and Anti-Microbially Active ZnO nano particles, Mater. Charact., 99: 266-276 (2015).
[27] Brebu M., Vasile C., Thermal Degradation Of Lignin-A Review, Cellu. Chem. Technol. 44(9): 353-363  (2019).
[28]  Police A.K.R., Basavaraju S., Pruthu K., Valluri Durga K., Machiraju S., Preparation and Characterization of Bi-doped TiO2and its Solar Photocatalytic Activity for the Degradation of Isoproturon Herbicide, Mater. Res. Bull., 46: 1766–1771(2011).
[29] Mohamad S., Shaikh F., Rajaram S., ByoungKoun Min, Yun Jeong Hwang, Oh-shim Joo, D-Sorbitol-Induced Phase Control of TiO2 Nano Particles and Ots Application for Dye-Sensitized Solar Cells, Sci. Rep.,6: 20103 (2013).
[30] Colón G., Sánchez-España J.M., Hidalgo M.C.,  Navío J.A., Effect of TiO2Acidic Pre-Treatment on the Photocatalytic Properties for Phenol Degradation, J. Photochem. Photobiol. A: Chemistry, 179(1): 20-27 (2006).
[31] Mohamed M.A., Salleh W.N.W., Jaafar J., MohdHir Z.A., SaufiRosmi M., Mutalib M.A., Ismail A.F.,  Tanemura M., Regenerated Cellulose Membrane as Bio-Template for In-Situ Growth of Visible-Light Driven C-Modified Mesoporous Titania, Carbohydr. Polym.,146: 167-173 (2016).
[32] Hanaor D.A.H., Charles Sorell C., Review of the Anatase to Rutile Phase Transformation, J. Mater. Sci.,46:166-173 (2016).
[33] Lin H, Huang C.P, Li W., Ni C., Ismat Shah S., Tseng Y.H.,Size dependency of Nanocrystalline TiO2 on Its Optical Property and Photocatalytic Reactivity Exemplified by 2-chlorophenol, Appl. Cat. B: Environ. 68(2006): 1-11(2006).
[34] Valechha D., Lokhande S., Klementova M., Subrt J., Rayalu S., Labhsetwar N., study of Nano-Structured Ceria for Catalytic CO Oxidation, Journal of Material Chemistry, 21: 3718-3725 (2011).
[35]Dupuy N., Wojciechowski C., Ta C.D., Huvenne J.P., Legrard P., Mid Infrared Spectroscopy and Chemometrics in Corn Starch Classification, J. Mat. Struct., 410: 551-554 (1997).
[36]Wang Q., Hu X., Du Y.,.Kennedy J.F, Alginate/Starch Blend Fibers and Their Properties for Drug Controlled Release, Carbohyd. Polym.,82: 842-847(2010).
[37] Preethi T., Abarna B., Rajarajeswari G.R., Applied Influence of Chitosan–PEG Binary Template on the Crystallite Characteristics of Sol–Gel Synthesized Mesoporous Nano Titania Photocatalyst, Surf. Sci., 317: 90–97 (2014).
[39] Bagheri S., MohdHir Z.A., Yousefi A.T., Abdul Hamid S.B., Progress on Mesoporous Titanium di Oxide Synthesis: Modification and Applications, Microporous Mesoporous Mater, 218: 206–222 (2015).
[40] Milanovi M., Ljubica Nikoli M, Modification of TiO2 Nano Particles Through Lanthanum Doping and PEG Templating, Process Appl. Ceram.,8(4): 195–202 (2014).
[42] Mukhlish M.Z.B., Najnin F., Rahman M.M., Uddin M. J., Photocatalytic Degradation of Different Dyes Using TiO2 with High Surface Area-A Kinetic Study, J. Sci. Res., 5: 301-314(2013).
[43]Goncalves M.S.T., Oliveira-Campose A.M.F., Pinto E.M.M.S., Plasencia P.M.S., Queiroz, M.J.R.P., Photochemical Treatment of Solutions of Azo Dyes Containing TiO2, Chromosphere, 39: 781-786(1999).
[44] Sauer T., Neto G.C., Jose H.J., Moreira R.F.P.M., Kinetics of PhotocatalyticDegradation of Reactive Dyes in a TiO2Slurry Reactor, J. Photochem. Photobiol. A: Chem., 149: 147-154 (2002).
[46] LópezVásquez A., Santamaría D., Tibatá M., Gómez C.,Congo Red Photocatalytic Decolourization using Modified Titanium, World Academy of Science, Engineering and Technology, Int. J. Miner. Metall. Mater., 4:680-683 (2010).
[47] Muruganandham M., Swaminathan M., Solar Photocatalytic Degradation of a Reactive Azo Dye in TiO2-Suspension, Sol. Energy Mater Sol. Cells, 81: 439–457 (2004).
[48] Md. AhsanHabib, IqbalMohmmad Ibrahim Ismail, Abu JafarMahmood, Md. RafiqueUllah, PhotocatalyticDecolorization of Brilliant Golden Yellow in TiO2 and ZnO Suspensions, J. Saud. Chem. Soc., 16(4): 423-429 (2012).
[49] Chen C., Chou T.C., Kinetics of Toluene Hydrogenation on a Supported Nickel Catalyst, Ind. Eng. Chem. Res., 32: 1520 (1993).
[50] Movahedi M., Mahjoub A. R., Janitabar-Darzi S., Photodegradation of Congo Red in Aqueous Solution on ZnO as an Alternative Catalyst to TiO2, J. Iran. Chem. Soc., 6: 570-577 (2009).