An Electrochemical Sensor Based on Multi-Walled Carbon Nanotubes Functionalized with 2-Picolinyl Hydrazide for Electrochemical Detection of Pb(II) Ions

Document Type : Research Article


College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, Ningxia 756000, P.R. CHINA


A new electrochemical sensor was constructed with the nanometer coaxial cable, which was prepared based on Multi-Walled Carbon NanoTubes (MWCNTs) and pyridine. the analysis of trace Pb(II) with Differential Pulse Anodic Stripping Voltammetry (DPASV) was studied. The MWCNTs–TPI–2–Ph was characterized by SEM, TEM, and electrochemical methods. Various parameters such as deposition time, pH values, deposition potential, interference experiment, stability, and reproducibility were investigated. DPASV was used for evaluating the detection of trace Pb(II) based on the accumulation process. Under the optimal conditions, the MWCNTs–TPI–2–Ph/GCE showed excellent stripping response of Pb(II) in the ranges of 1 to 100 μmol/L, the peak currents linearly increased with the concentration of Pb(II). The detection limit was calculated to be 0.03 μM (S/N=3). Detection mechanism for Pb(II) based on MWCNTs–TPI–2–Ph/GCE was proposed. Therefore, it was essential to design an electrochemical sensor based on a new metal ions capture reagent.


Main Subjects

[1] Eshghi A., Kheirmand M., Surface modification of Glassy Carbon Electrode by Ni-Cu Nanoparticles as a Competitive Electrode For Ethanol Electro-Oxidation, Iran. J. Chem. Chem. Eng. (IJCCE), 37(5): 1-8 (2018).    
[3] Afkhami A., Shirzadmehr A., Madrakian T. and Bagheri H., Improvement in the Performance of a Pb2+ Selective Potentiometric Sensor Using Modified Core/Shell SiO2/Fe3O4 Nano-Structure, J. Mol. Liq., 199: 108-114 (2014).
[5] Kazemipour M., Ansari M., Mohammadi A., Be itollahi H., Ahmadi R., Use of Adsorptive Square-Wave Anodic Stripping Voltammetry at Carbon Paste Electrode for the Determination of Amlodipine Besylate in Pharmaceutical Preparations, J. Anal. Chem., 64(1):65-70 (2009).  
[6] Bansod B.K., Kumar T., Thakur R., Rana S., Singh I., A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms, Biosens. Bioelectron., 94: 443-455 (2017).  
[7] Bagheri H., Afkhami A., Khoshsafar H., Rezaei M., Sabounchei S.J., Sarlakifar M., Simultaneous Electrochemical Sensing of Thallium, Lead and Mercury Using a Novel Ionic Liquid/Graphene Modified Electrode, Anal. Chim. Acta., 870: 56-66 (2015).  
[8] Deshmuk M.A., Celiesiute R., Ramanaviciene A., Shirsat M.D., Ramanavicius A., EDTA PANI/SWCNTs Nanocomposite Modified Electrode for Electrochemical Determination of Copper (II), Lead (II) and Mercury (II) Ions, Electrochim. Acta., 259: 930-938 (2018).  
[9] Ganjali M.R., Dourandish Z., Beitollahi H., Tajik S., Hajiaghababaei L., Larijani B., Highly Sensitive Determination of Theophylline Based on Graphene Quantum Dots Modified Electrode, Int. J. of Electrochem. Sc., 13: 2448-2461 (2018).
[11] Madadrang C.J., Kim H.Y., Gao G., Wang N., Zhu J., Feng H., Gorring M., Kasner M.L., Hou S.F., Adsorption Behavior of EDTA-Graphene Oxide for Pb (Ⅱ) Removal, ACS. Appl. Mater. Inter., 4(3): 1186-1193 (2012).  
[12] Hai T.L., Hung L.C., Phuong T.T., Ha B.T., Nguyen B.S., Hai T. D., Nguyen V. H.,  Multiwall Carbon Nanotube Modified by Antimony Oxide (Sb2O3/MWCNTs) Paste Electrode for the Simultaneous Electrochemical Detection of Cadmium and Lead Ions, Microchemical Journal., 153: 104456-104480 (2020).   
[15] Tajik S., Dourandish Z., Zhang K., Beitollahi H., Le Q.V., Jang H.W., Shokouhimehr M., Carbon and Graphene Quantum Dots: A Review on Syntheses, Characterization, Biological and Sensing Applications for Neurotransmitter Determination, RSC Adv., 10(26): 15406-15429 (2020).    
[18] Lu Z., Yang S., Yang Q., Luo S., Liu C., Tang Y., A Glassy Carbon Electrode Modified with Graphene, Gold Nanoparticles and Chitosan for Ultrasensitive Determination of Lead(II), Mikrochim Acta, 180(7): 555-562 (2013).  
[19] Moghaddam H. M., Beitollahi H., Tajik S., Jahani S., Khabazzadeh H., Alizadeh R., Voltammetric Determination of Droxidopa in the Presence of Carbidopa Using a Nanostructured Base Electrochemical Sensor, Russ. J. Electrochem., 53(5): 452-460 (2017).  
[20] Mathew A., Parambadath S., Kim S.Y., Park S.S., Ha C.S., Adsorption of Cr(III) Ions Using 2-(ureylenemethyl)pyridine Functionalized MCM-41, J. Porous Mat., 22(3): 831-842 (2015).  
[21] Beitollahi H., Khalilzadeh M. A., Tajik S., Safaei M. Shokouhimehr M., Recent Advances in Applications of Voltammetric Sensors Modified with Ferrocene and its Derivatives, ACS Omega, 5(5): 2049-2059 (2020).  
[22] Mei J., Ying Z., Sheng W., Chen J., Zheng P., A Sensitive and Selective Electrochemical Sensor for the Simultaneous Determination of Trace Cd2+ and Pb2+, Chem. Pap., 74(3): 1027-1037 (2019).  
[23] Motaghi M., Beitollahi M.H., Tajik S., Hosseinzadeh R., Nanostructure Electrochemical Sensor for Voltammetric Determination of Vitamin C in the Presence of Vitamin B6: Application to Real Sample Analysis, Int. J. of Electrochem. Sc.,11: 7849-7860 (2016).
[25] Priya T., Dhanalakshmi N., Thennarasu S., Karthikeyan V., Thinakaran N., Ultra Sensitive Electrochemical Detection of Cd2+ and Pb2+ Using Penetrable Nature of Graphene/Gold Nanoparticles/Modified L-Cysteine Nanocomposite, Chem. Phys. Lett., 731: 136621-136628 (2019).  
[26] Ramírez María L., Tettamanti C. S., Gutierrez F. A., Gonzalez-Domínguez J. M., Alejandro A. C., Javier H.F., Cysteine Functionalized Bio-Nanomaterial for the Affinity Sensing of Pb(II) as an Indicator of Environmental Damage, Microchemical Journal., 141: 271-278 (2018).  
[28] Tenorioalfonso A., Sanchez M. C. and Franco J. M., A Review of the Sustainable Approaches in the Production of Bio-Based Polyurethanes and Their Applications in the Adhesive Field, J. Polym. Environ., 28(3): 749-774 (2020).
[30] Wang H.Q., Xu R.Y., Chen H., Yuan Q.H., Synthesis of Nitrogen and Sulfur Co-Doped Yolk-Shell Porous Carbon Microspheres and their Application for Pb(II) Detection in Fish Serum, J. Solid State Chem., 266(10): 63-69 (2018).  
[32] Xie F., Yang M., Jiang M., Huang X. J., Xie P. H., Carbon Based Nanomaterials-A Promising Electrochemical Sensor Toward Persistent Toxic Substance, Trac-Trends Anal. Chem., 119: 115624-115639 (2019).  
[33] Beitollahi H., Safaei M., Tajik S., Different Electrochemical Sensors for Determination of Dopamine as Neurotransmitter in Mixed and Clinical Samples: A Review, Anal. Bioanal. Chem., 6(1): 81-96 (2019). 
[34] Xu H., Zeng L., Xing S., Xian Y., Shi G., Ultrasensitive voltammetric Detection of Trace Lead(II) and Cadmium(II) using MWCNTs-Nafion/Bismuth Composite Electrodes, Electroanalysis., 20(24): 2655-2662 (2008).    
[35] Beitollahi H., Dourandish Z., Tajik S., Ganjali M. R., Norouzi P., Faridbod F., Application of Graphite Screen Printed Electrode Modified With Dysprosium Tungstate Nanoparticles in Voltammetric Determination of Epinephrine in the Presence of Acetylcholine, J. Rare. Earth., 36: 750-757 (2018).   
[36] Hai T.L., Hung L.C., Phuong T., Ha B., Nguyen V.H., Multiwall carbon Nanotube Modified by Antimony Oxide (Sb2O3/MWCNTs) Paste Electrode for the Simultaneous Electrochemical Detection of Cadmium and Lead Ions, Microchem. J., 153: 104456-104462 (2019).   
[37] Feminus J.J. and Deepa P.N., Electrochemical Sensor Based on Composite of Reduced Graphene and Poly-Glutamic Acid for Selective and Sensitive Detection of Lead, J. Mater. Sci-Mater El., 30(16): 15553-15562 (2019).  
[41] Maleki B., Baghayeri M., Ghanei-Motlagh M., Zonoz F.M., Amiri A., Hajizadeh F., Hosseinifar A., Esmaeilnezhad E., Polyamidoamine Dendrimer Functionalized Iron Oxide Nanoparticles for Simultaneous Electrochemical Detection of Pb2+ and Cd2+ Ions in Environmental Waters, Measurement, 140: 81-88 (2019).