Potential Improvement in Photo Reduction of Towards Cr(VI) Species from Aqueous Solutions onto a Heterogeneous Na-Clay/Fe2O3 Catalyst

Document Type : Research Article


Laboratory of Materials Technology, University of Science and Technology Houari Boumediene, B.P. 32, El-Alia, Bab-Ezzouar, Algiers, ALGERIA


Clays in the soils are a natural barrier against pollution. A representative sample of clay (illite) from Algeria is collected and analyzed by XRD. The results show that this sample is illite containing calcite and quartz as impurities. We also analyzed the clay by SEM, EDS, and BET, and modified it by chemical treatment with NaCl in order to increase its specific surface area with the insertion of Na+ cations into the inter-foliar space. The study of Cr(VI) ions adsorption onto Na-Clay was performed. The influence of Cr(VI) initial concentration, pH of the solution, temperature, and solid/liquid ratio was studied. Among the tested models, the equilibrium data are well-fitted by the Langmuir isotherm. The maximum Cr(VI) adsorption rate was 44% at 25°C with limited capacity adsorption of 10 mg/g. The adsorption kinetic is best described by the pseudo-second-order model. The Cr(VI) ions reduction onto Na-Clay/Fe2O3 and the effect of the same parameters were also performed. The maximum reduction (98%) was reached at pH = 2, T = 25°C, [Cr(VI)] = 50 mg/L, and S/L = 1 mg/mL. It was found that the reaction follows the pseudo-first-order rationalized well by the Langmuir-Hinshelwood (LH) model. The evaluation of the thermodynamic parameters (ΔG°, ΔH°, and ΔS°) revealed that chromium (VI) adsorption and reduction were endothermic and exothermic respectively.


Main Subjects

[3] Jamshaid I.M., Cecil F., Khalil A., Munawar I., Mushtaq M., Naeem M.A.,  Bokhari T.H., Kinetic Study of Cr(III) and Cr(VI) Biosorption Using Rosa Damascena Phytomass: A Rose Waste Biomass, J. Chem., 25: 2099-20103 (2013)
[4] Aid A., Amokrane S., Nibou D., Mekatel E., Trari M., Hulea V., Modeling Biosorption of Cr (VI) onto Ulva Compressa L. from Aqueous Solutions, Wat. Sci. Tech., 77 (1), 60-69 (2018).
[5] Dakiky M., Khamis M., Manassra A., Mereb M., Selective Adsorption of Chromium(VI) in Industrial Wastewater Using Low-Cost Abundantly Available Adsorbents, Adv. Environ. Res., 6: 533-540 (2002)
[7] Ladjali S., Amokrane S., Mekatel E.H., Nibou D., Adsorption of Cr(VI) on Stipa tenacissima L (Alfa): Characteristics, Kinetics and Thermodynamic Studies, Adsorption of Cr(VI) on Stipa tenacissima L (Alfa):Characteristics, Kinetics and Thermodynamic Studies, Sep. Sci. Tech. , 54 (6): 876-887 (2019)
[8] Barquist K., Larsen S.C., Chromate Adsorption on Bifunctional, Magnetic Zeolite Composites, Micro. Meso. Mater., 130: 197–202 (2010).
[10] Barkat M., Nibou D., Chegrouche S., Mellah A., Kinetics and Thermodynamics Studies of Chromium (VI) Ions Adsorption onto Activated Carbon from Aqueous Solutions, Chem. Eng. Proc. Pro. Intens., 48(1): 38-47 (2009).
[11] Vignesha K., Priyankab R., Rajarajanc M., Suganthia A., Photoreduction of Cr(VI) in Water using Bi2O3–ZrO2 Nanocomposite under Visible Light Irradiation, Mate. Sci. Eng. B, 178(2):149–157 (2013).
[12] Mekatel H., Amokrane S., Bellal B., Trari M., Nibou D., Photocatalytic Reduction of Cr (VI) on Nanosized Fe2O3 Supported on Natural Algerian Clay: Characteristics, Kinetic and Thermodynamic Study, Chem. Eng. J., 200: 611-618 (2012).
[13] Mekatel E.H., Nibou D., Trari M., Amokrane S., Dahdouh N., Removal of Maxilon Red Dye by Adsorption and Photocatalysis: Optimum Conditions, Equilibrium and Kinetic Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 40(1): 93-110 (2021).
[14] Zeng Y., Woo H., Lee G., Park J., Adsorption of Cr(VI) on Hexadecylpyridinium Bromide (HDPB) Modified Natural Zeolites, Micro. Meso. Mater., 130: 83–91 (2010)
[15] Liu S.S., Chen Y.Z., Zhang L.D., Hua G.M., Xu W., Li N., Zhang Y., Enhanced Removal of Trace Cr(VI) Ions from Aqueous Solution by Titanium Oxide –Ag Composite Adsorbents, J. Hazard. Mater. 190: 723-728 (2011)
[16] Venditti F., Ceglie A., Palazzo G., Colafemmina G., Lopez F., Removal of Chromate from Water by a New CTAB-Silica Gelatin Composite, J. Coll. Inter. Sci. 310: 353–361(2007).
[17] Samani M.R., Borghei S.M., Olad A., Chaichi M.J., Influence of Polyaniline Synthesis Conditions on Its Capability for Removal and Recovery of Chromium from Aqueous Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 30 (3): 97-100 (2011).
[18] Ba S., Ennaciri K., Yaacoubi A., Alagui A., Bacaoui A., Activated Carbon from Olive Wastes as an Adsorbent for Chromium Ions Removal, Iran. J. Chem. Chem. Eng., 37(6): 107-123 (2018)
[19] Esmaeili A., Ghasemi S., Zamani F., Investigation of Cr(VI) Adsorption by Dried Brown Algae Sargassum Sp. and its Activated Carbon, Iran. J. Chem. Chem. Eng., 31(4): 11-19 (2012)
[20] Aghaie H., Barmaki Z., Seif A., Monajjemi M., Kinetic and Thermodynamic Study of Chromium Picolinate Removing from Aqueous Solution onto fhe Functionalized Multi-Walled Carbonnanotubes, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3): 765-779 (2021).
[21] Krobba, A., Nibou, D., Amokrane, S., Mekatel, H., Adsorption of Copper (II) onto Molecular Sieves NaY, Desal. Wat. Treat., 37: 1–7 (2012).
[22] Aid A., Amokrane S., Nibou D., Mekatel H., Removal of Cr⁶⁺, Co²⁺ and Ni²⁺ Ions from Aqueous Solutions by Algerian Enteromorpha Compressa (L.) Biomass, World Academy of Science, Engineering and Technology, Inter. J. Ecol. Eng., 11: 11 (2017).
[23] Zeng Y., Woo H., Lee G., Park J., Removal of Chromate From Water Using Surfactant Modified Pohang Clinoptilolite and Haruna Chabazite, Desalination 257: 102–109  (2010)
[24] Houhoune F., Nibou D., Chegrouche S., Menacer S., Behaviour of Modified Hexadecyltrimethylammonium   Bromide Bentonite  Toward Uranium Species, J. Env. Chem. Eng. 4 (3): 3459-3467 (2016).
[25] Benmessaoud A. Nibou D., Mekatel E.H., Amokrane S., A comparative Study of The Linear and Non-Linear Methods for Determination of the Optimum Equilibrium Isotherm for Adsorption of Pb2+ Ions onto Algerian Treated Clay, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 153-171 (2020).
[26] Nibou D., Mekatel H., Amokrane S., Barkat M., Trari M., Adsorption of Zn2+ Ions onto NaA and NaX Zeolites: Kinetic, Equilibrium and Thermodynamic Studies, J. Hazard. Mater., 173: 637-646 (2010).
[27] Barkat M., Nibou D., Amokrane S., Chegrouche S., Mellah A., Uranium (VI) Adsorption on Synthesized 4A and P1 Zeolites: Equilibrium, Kinetic, and Thermodynamic Studies, Com.  Rend. Chim., 18 (3): 261-269 (2015).
[28] Ferhat D., Nibou D., Mekatel E.H., Amokrane S., Adsorption of Ni2+ Ions onto NaX and NaY Zeolites: Equilibrium, Kinetic, Intra Crystalline Diffusion and Thermodynamic Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6) : 63-81 (2019).
[29] Nibou D., Amokrane S., Lebaili N., Use of NaX Porous Materials in the Recovery of Iron Ions, Desalination 250(1): 459-462 (2010).
[30] Leyva-Ramos R., Jacobo-Azuara A., Diaz-Flores P.E., Guerrero-Coronado R.M., Mendoza-Barron J., Berber-Mendoza M.S., Adsorption of Chromium(VI) from an Aqueous Solution on a Surfactant-Modified Zeolites, Coll. Surf. A: Phy. Eng. Aspects, 330: 35–41(2008)
[31] Mekatel E.H., Amokrane S., Aid A., Nibou D., Trari M., Adsorption of Methyl Orange on Nanoparticles of a Synthetic Zeolite NaA/CuO, Com. Rend. Chim. 18(3): 336-344 (2015).
[32] Houhoune F., Djamel N., Samira A., Mahfoud B., Modelling and Adsorption Studies of Removal Uranium (VI) Ions on Synthesised Zeolite NaY, Des. Wat. Treat., 51(28-30): 5583-5591(2013)
[33] Haddad D., Mellah A., Nibou D., Khemaissia S., Promising Enhancement in The Removal of Uranium Ions by Surface-Modified Activated Carbons: Kinetic and Equilibrium Studies, J. Environ. Eng., 144(5): 04018027 (2018)
[35] Mekatel E.H., Trari M., Nibou D., Ibtissam S., Amorkrane S., Preparation and Characterization of α-Fe2O3 Supported Clay as Novel Photocatalyst for Hydrogen Evolution, Int. J. Hydro. Energy, 44(21): 10309-10315 (2019).