Adsorption of Ni2+ Ions onto NaX and NaY Zeolites: Equilibrium, Kinetics, Intra Crystalline Diffusion, and Thermodynamic Studies

Document Type: Research Article


Laboratory of Materials Technology, University of Science and Technology Houari Boumediene, B.P. 32, El-Alia, Bab-Ezzouar, Algiers, ALGERIA


This paper focuses on intra crystalline diffusion of Ni2+ ions onto NaX and NaY zeolites. The zeolites are obtained by the hydrothermal synthesis method. The samples were characterized by several techniques: X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) and InfraRed Spectroscopy (FT-IR). Physical parameters such as pH solution (2 - 7), adsorbent dose (0.25 - 2 g/L), initial concentration of Ni (II) ions (50 - 200 mg/L) and temperature (298 - 323 K) are optimized. The maximum uptake is 99% and 97% for NaX and NaY zeolite respectively under the optimum conditions: pH ∼ 7 and adsorbent dose of 1 g/L for initial concentration of 50 mg/L at 298 K. The best interpretation of the experimental data is obtained by the Langmuir isotherm with a maximum adsorption capacity of 111.85 and 77.57 mg/g for NaX and NaY respectively. The results show that the kinetic data for both zeolites follow the pseudo-second-order model, indicating the presence of physical adsorption. The free energy (DGo), enthalpy (DHo), and entropy (DS°) are evaluated. The process has proved it's spontaneous and endothermic. Diffusion mechanisms of Ni (II)ions adsorption onto NaX and NaY has shown that intraparticle diffusion is the limiting step of the process. The NaX and NaY have been applied to wastewater from the Algerian industrial zone to eliminate the Ni2+ effluents using the optimal parameters. It has been found that the Ni2+ ions removal yield was 77.81% for NaX and 83.86% for NaY.


Main Subjects

[6] Nibou D., Mekatel H., Amokrane S., Barkat M., Trari M., Adsorption of Zn2+ Ions onto NaA and NaX Zeolites: Kinetic, Equilibrium and Thermodynamic Studies, J. Hazard. Mater., 173: 637-646 (2010).

[7] Aid A., Amokrane S., Nibou D., Mekatel E., Trari M., Hulea V., Modeling Biosorption of Cr (VI) onto Ulva Compressa L. from Aqueous Solutions, Wat. Sci. Tech., 77 (1), 60-69 (2018).

[8] Esmaeili N., Kazemian H., Bastani D., Synthesis of Nano Particles of LTA Zeolite by Means of Microemulsion Technique, Iran. J. Chem. Chem. Eng. (IJCCE), 30.2: 1-8 (2011).

[9] Esmaeili N., Kazemian H., Bastani D., Controlled Crystallization of LTA Zeolitic Nanoparticles from a Clear Solution Using Organic Template, Iran. J. Chem. Chem. Eng. (IJCCE), 30.2: 9-14 (2011).

[10] Tosheva L., Valentin P.V., Nanozeolites: Synthesis, Crystallization Mechanism, and Applications, Chem. Mater., 17(10): 2494-2513 (2005).

[11] Nezamzadeh-Ejhieh A., Shahriari E., Photocatalytic Decolorization of Methyl Green Using Fe (II)-o-Phenanthroline as Supported onto Zeolite Y, J. Ind. Eng. Chem., 20.5: 2719-27 (2014).

[12] Krobba A., Nibou D., Amokrane S., Mekatel H., Adsorption of Copper (II) onto Molecular Sieves NaY, Desal. Wat. Treat., 37: 1–7 (2012).

[13] Amokrane S., Rebiai R., Nibou D., Behaviour of Zeolite A, Faujasites X and Y Molecular Sieves in Nitrogen Gas AdsorptionJ. Appl. Sci., 7: 1985-1988 (2007).

[14] Breck D.W., "Zeolite Molecular Sieves-Structure Chemistry and Use", Wiley Interscience, New York (1974).

[15] Nezamzadeh-Ejhieh A., Khorsandi M., Hotodecolorization of Eriochrome Black T Using NiS–P Zeolite as a Heterogeneous Catalyst, J. Hazard. Mater., 176(1-3): 629-637 (2010)

[16] Nezamzadeh-Ejhieh A., Khorsandi S., Photocatalytic Degradation of 4-nitrophenol with ZnO Supported Nano-Clinoptilolite Zeolite, J. Ind. Eng. Chem. 20(3): 937-946 (2014). 

[18] Sistani S., Ehsani M.R., Kazemian H., Microwave Assisted Synthesis of Nano Zeolite Seed for Synthesis Membrane and Investigation of its Permeation Properties for H2 Separation, Iran. J. Chem. Chem. Eng. (IJCCE), 29(4): 99-104 (2010).

[19] Frising T., Leflaive P., Extraframework Cation Distributions in X and Y Faujasite Zeolites: A Review, Mic. Mes. Mat., 114: 27-63 (2008).

[20] Barkat M., Nibou D., Amokrane S., Chegrouche S., Mellah A., Uranium (VI) Adsorption on Synthesized 4A and P1 Zeolites: Equilibrium, Kinetic, and Thermodynamic Studies, Com.  Rend. Chim., 18(3): 261-269 (2015).

[22] Houhoune F., Djamel N., Samira A., Mahfoud B., Modelling and Adsorption Studies of Removal Uranium (VI) Ions on Synthesised Zeolite NaY, Des. Wat. Treat., 51 (28-30): 5583-5591(2013)

[23] Blanchard G., Maunaye M., Martin G., Removal of Heavy Metals from Waters by Means of Natural Zeolites, Water. Res, 18: 1501-1507 (1984).

[24] Barkat M., Nibou D., Chegrouche S., Mellah A., Kinetics and Thermodynamics Studies of Chromium (VI) Ions Adsorption onto Activated Carbon from Aqueous Solutions, Chem. Eng. Proc. Pro. Intens., 48 (1): 38-47 (2009).

[25] Beyond G., Adamson A., Myers L., The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites, J. Am. Chem. Soc., 69: 2836-2848 (1947).

[26] Turse R., Rieman III W., Kinetics of Ion Exchange in a Chelating Resin, J. Phs. Chem., 65: 1821-1824 (1961).

[28] Sinha P., Panicker P., Amalraj R., Krishnasamy V., Treatment of Radioactive Liquid Waste Containing Caesium by Indigenously Available Synthetic Zeolites: A Comparative Study, Waste. Manage., 15: 149-157 (1995).

[29] Aid A., Amokrane S., Nibou D., Mekatel H., Removal of Cr⁶⁺, Co²⁺ and Ni²⁺ Ions from Aqueous Solutions by Algerian Enteromorpha Compressa (L.) Biomass, World Academy of Science, Engineering and Technology, Inter. J. Ecol. Eng., 11(7):  -  (2017).

[30] Mekatel H., Amokrane S., Bellal B., Trari M., Nibou D., Photocatalytic Reduction of Cr (VI) on Nanosized Fe2O3 Supported on Natural Algerian Clay: Characteristics, Kinetic and Thermodynamic Study, Chem. Eng. J., 200:611-618 (2012).

[31] Baerlicher C., Meier W.M., Olson D.H., "Atlas of Zeolite Fromewerk Types”, 5th Revised Ed., Elsevier, Amesterdam (2001).

[34] Nezamzadeh-Ejhieh A., Badri A., Application of Surfactant Modified Zeolite Membrane Electrode Towards Potentiometric Determination of Perchlorate, J. Electroanal. Chem. 660(1): 71-79 (2011).

[35] Nezamzadeh-Ejhieh A., Badri A., Surfactant Modified ZSM-5 Zeolite as an Active Component of Membrane Electrode Towards Thiocyanate, Desalination, 281: 248-256 (2011).

[36] Mekatel EH., Amokrane S., Aid A., Nibou D., Trari M., Adsorption of Methyl Orange on Nanoparticles of a Synthetic Zeolite NaA/CuO, Com. Rend. Chim., 18(3), 336-344 (2015).

[37] Senobari S., Nezamzadeh-Ejhieh A., A Comprehensive Study on the Enhanced Photocatalytic Activity of CuO-NiO Nanoparticles: Designing the Experiments, J. Mol. Liq., 261: 208-217 (2018).

[39] Nibou D., Amokrane S., Lebaili N., Use of NaX Porous Materials in the Recovery of Iron Ions, Desalination 250 (1): 459-462 (2010).

[40] Borandegi M., Nezamzadeh-Ejhieh A., Enhanced Removal Efficiency of Clinoptilolite Nano-Particles Toward Co (II) from Aqueous Solution by Modification with Glutamic Acid, Colloids Surf. A: Physicochem. Eng. Aspects 479: 35-45 (2015).

[41] Garba Z.N., Ugbaga N.I., Abdullahi A.K., Evaluation of Optimum Adsorption Conditions for Ni (II) and Cd (II) Removal from Aqueous Solution by Modified Plantain Peels (MPP), Beni-Suef Univ. J. Basic Appl. Sci., 5: 170-179 (2016).

[42] Marcos C., Rodríguez I., Thermoexfoliated Commercial Vermiculites for Ni2+ Removal, Appl. Clay. Sci., 132: 685-693 (2016).

[44] Eshraghi F., Nezamzadeh-Ejhieh A., EDTA-Functionalized Clinoptilolite Nanoparticles as an Effective Adsorbent for Pb (II) Removal, Environ. Sci. Pol. Res., 25(14): 14043-14056 (2018).

[45] Lamgmuir I., The Constitution and Fundamental Properties of Solids and Liquids, Part 1. Solids, J. Am. Chem. Soc., 38: 2221-2295 (1916).

[46] Freundlich H., Uber die Adsorption in Losungen [Adsorption in Solution], Z. Phys. Chem., 57:  -  (1906).

[48] Nezamzadeh-Ejhieh A., Kabiri-Samani M., Effective Removal of Ni (II) from Aqueous Solutions by Modification of Nano Particles of Clinoptilolite with Dimethylglyoxime, J. Hazard. Mater., 260: 339-349 (2013).

[49] Heidari-Chaleshtori M., Nezamzadeh-Ejhieh A., Clinoptilolite Nano-Particles Modified with Aspartic Acid for Removal of Cu (II) from Aqueous Solutions: Isotherms and Kinetic Aspects, New J. Chem. 39.12: 9396-9406 (2015).

[51] Fritzsche S., Haberlandt R., Jost S.,. Schüring A., Modelling Diffusion in Zeolites by Molecular Dynamics Simulations, Mol. Simulat., 25:  27-40 (2000).

[52] Dissanayake D., Wijesinghe W., Iqbal S., Priyantha N., Iqbal M., Isotherm and Kinetic Study on Ni (II) and Pb (II) Biosorption by the Fern Asplenium Nidus L, Ecol. Eng., 88: 237-241 (2016).

[54] Shirzadi H., Nezamzadeh-Ejhieh A., An Efficient Modified Zeolite for Simultaneous Removal of Pb (II) and Hg (II) from Aqueous Solution, J. Mol. Liq., 230: 221-229 (2017).

[55] Tajiki, A., Abdouss, M., Synthesis and Characterization of Graphene Oxide Nano-Sheets for Effective Removal of Copper Phthalocyanine from Aqueous Media, Iran. J. Chem. Chem. Eng. (IJCCE),36(4): 1-9 (2017).

[57] Wu F.C., Tseng R.L., Juang R.S., Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics, Chem. Eng. J, 153: 1-8 (2009).

[58] Martins L.F., Parreira M.C.B., Ramalho J.P.P., Morgado P., Filipe E.J., Prediction of Diffusion Coefficients of Chlorophenols in Water by Computer Simulation, Fluid Phase Equilibr, 396: 9-19 (2015). 

[60] Wu Y., Wang L., Kinetic and Thermodynamic Studies of the Biosorption of Ni (II) by Modified Rape Straw, Procedia Environ Sci., 31: 75-80 (2016).

[61] Pitcher S., Slade R., Ward N., Heavy Metal Removal from Motorway Stormwater Using Zeolites, Sci. Total Environ., 334: 161-166 (2004).

[62] Çoruh S., Ergun O.N., Ni2+ Removal from Aqueous Solutions Using Conditioned Clinoptilolites: Kinetic and Isotherm Studies, Environmental Progress & Sustainable Energy 28: 162-172 (2009).

[63] Turkman A., Aslan S., Ege I., Treatment of Metal Containing Wastewaters by Natural Zeolites, Fresen. Environ. Bull, 13: 574-580 (2004).

[65] Lam Y.F., Lee L.Y., Chua S.J., Lim S.S., Gan S., Insights into the Equilibrium, Kinetic and Thermodynamics of Nickel Removal by Environmental Friendly Lansium Domesticum Peel Biosorbent, Ecotoxicol. Environ. Saf., 127: 61-70 (2016).

[66] Sudha R., Srinivasan K., Premkumar P., Removal of Nickel (II) from Aqueous Solution Using Citrus Limettioides Peel and Seed Carbon, Ecotoxicol. Environ. Saf., 117: 115-123 (2015).