A Comparative Study of the Linear and Non-Linear Methods for Determination of the Optimum Equilibrium Isotherm for Adsorption of Pb2+ Ions onto Algerian Treated Clay

Document Type : Research Article


Laboratory of Materials Technology, University of Science and Technology Houari Boumediene, B.P. 32, El-Alia, Bab-Ezzouar, Algiers, ALGERIA



The adsorption equilibrium isotherms of lead from aqueous solutions onto treated clay were studied and modeled. The ability of clay to remove Pb 2+ ions from aqueous solutions has been studied at different operating conditions: contact time (5-90 min), adsorbent dosage (1-4 g/L), initial ion concentration (10 - 200 mg/L), and pH solution (1 - 11) and temperature (298 - 333 K). The maximum uptake (98.%) is obtained under the optimum conditions: pH ∼ 7 and adsorbent dose of 2.5 g/L for an initial concentration of 10 mg/Lat 298 K. In order to determine the best-fit isotherm, the experimental equilibrium data were analyzed using some adsorption isotherm models with
two-parameters as Langmuir, Freundlich, Temkin, Elovich and Dubinin-Radushkevich,
and three-parameters as Langmuir-Freundlich, Redlich-Peterson, Sips, Fritz-Schlender, and Toth. Models with four-parameters as Fritz-Schlunder and Baudu and with five-parameters as Fritz-Schlunder were also used. A comparison of linear and non-linear regression methods for predicting the optimum isotherms was made using the experimental adsorption equilibrium data of Pb2+ ions onto treated clay. The following error analysis methods were used, the coefficient of determination R2, the sum of the squares of the errors, the sum of the absolute errors, the average relative error, the Mean Square Error, and the Root Mean Square Error. The error values indicated that the non-linear method is a better way to obtain the isotherm parameters describing the Pb2+ ions adsorption onto the clay. The comparison between different models shows that the Fritz-Schlünder model with five-parameters was more suitable to describe the equilibrium data. The kinetics data of batch interaction was also analyzed with various kinetic models. It was found that the pseudo-second-order model using the non-linear regression method predicted best the experimental data.


Main Subjects

[3] Spiro G.T., Stigliani W.M., “Chemistry of the Environment”, Prentice-Hall, New Jersey (1996).
[4] Sitting M., “Handbook of Toxic and Hazardous Chemicals”, Noyes Publications, Park Ridge, NJ, (1981).
[5] Zehhaf A., Benyoucef A., Berenguer R., Quijada C., Taleb S., Morallon, E., Lead Ion Adsorption from Aqueous Solutions in Modified Algerian Montmorillonites, J. Therm. Anal. Calorim.110(3): 1069-1077 (2011).
[6] Patterson J.W., “Industrial Wastewater Treatment Technology”, 2nd Ed., Butterworth–Heinemann, London (1985).
[8] Goleij, M., Fakhraee, H. Response Surface Methodology Optimization of Cobalt (II) and Lead (II) Removal from Aqueous Solution using MWCNT-Fe3O4 Nanocomposite, Iran. J. Chem. Chem. Eng. (IJCCE), 36(5), 129-141 (2017).
[9] Poorsadeghi, S., Kassaee, M. Z., Fakhri, H., Mirabedini, M., Removal of Arsenic from Water Using Aluminum Nanoparticles Synthesized Through Aec Discharge Method, Iran. J. Chem. Chem. Eng. (IJCCE), 36(4): 91-99 (2017).
[10] Houhoune F., Nibou D., Chegrouche S., Menacer S., Behaviour of Modified Hexa decyltrimethylammonium Bromide Bromide Towar Uranium Species, J. Env. Chem. Eng. 4 (3): 3459-3467 (2016).
[11] Naseem R., Tahir S.S., Removal of Pb(II) from Aqueous/Acidic Solutions by Using Bentonite as an Adsorbent, Water Res. 35: 3982–3986 (2001).
[12] Mekatel H., Amokrane S., Bellal B., Trari M., Nibou D., Photocatalytic Reduction of Cr (VI) on Nanosized Fe2O3 Supported on Natural Algerian Clay: Characteristics, Kinetic and Thermodynamic Study, Chem. Eng.  J., 200:611-618 (2012).
[13]  Barkat M., Chegrouche S., Mellah A., Bensmain B., Nibou D.,  Boufatit M., Application of Algerian Bentonite in the Removal of Cadmium (II) and Chromium (VI) from Aqueous Solutions, J. Surf. Eng. Mater. Adv. Tech. 4 (04): 210 (2014).
[14] Mekhloufi M., Zehhaf A., Benyoucef A., Quijada C., Morallon E., Removal of 8-Quinolinecarboxylic Acid Pesticide from Aqueous Solution by Adsorption on Activated Montmorillonite, Environ. Monitor. Asses., 185(12): 10365-10375 (2013).
[15] Zehhaf, A., Benyoucef, A., Quijada, C., Taleb, S., Morallon, E., Algerian Natural Montmorillonites for Arsenic(III) Removal in Aqueous Solution, Inter. J. Env. Sci. Tech.12(2): 595-602 (2015).
[16] Özcan A., Ömeroğlu Ç., Erdoğan Y., Özcan A. S., Modification of Bentonite with a Cationic Surfactant: An Adsorption Study of Textile dye Reaction Blue 19, J. Hazard Mat. 140 (1): 173-179 (2007).
[17] España V.A.A., Sarkar B., Biswas B., Rusmin R., Naidu R., Environmental Applications of Thermally Modified and Acid Activated Clay Minerals: Current Status of the Art., Env. Techn. Innov. (2016).
[18] Belbachir I., Makhoukhi B., Adsorption of Bezathren Dyes Onto Sodic Bentonie from Aqueous Solutions., J. Taiwan  Inst. Chem. Eng., 75. 105-111 (2017).
[19] Zivica V., Palou M.T., Physico-Chemical Characterization of Thermal Treated Bentonite, Compos Part B-Eng., 68: 436-445 (2015).
[20] Makhoukhi B., Didi M.A., Moulessehoul H., Azzouz A., Telon Dye Removal from Cu(II)-Containing Aqueous Media Using p-Diphosphonium Organomontmorillonite, Mediter. J. Chem., 1(2): 44-55 (2011).
[21] Mekatel H., Amokrane S., Bellal B., Trari M., Nibou D., Photocatalytic Reduction of Cr (VI) on Nanosized Fe2O3 Supported on Natural Algerian Clay: Characteristics, Kinetic and Thermodynamic Study, Chem. Eng.  J., 200: 611-618 (2012).
[22] Meshram S., Limaye R., Ghodke S., Nigam S., Sonawane S., Chikate R., Continuous flow Photocatalytic Reactor Using ZnO–bentonite Nanocoposite for Degradation of Phenol,. Chem. Eng.J. 172(2): 1008-1015 (2011).
[23] Krobba, A., Nibou, D., Amokrane, S., Mekatel, H., Adsorption of Copper (II) onto Molecular Sieves NaY, Desal. Wat. Treat., 37: 1–7 (2012).
[24] Aid A., Amokrane S., Nibou D., Mekatel E., Trari M., Hulea V., Modeling Biosorption of Cr (VI) onto Ulva Compressa L. from Aqueous Solutions, Wat. Sci. Tech., 77 (1): 60-69 (2018).
[25] Blanchard G., Maunaye M., Martin G., Removal of Heavy Metals from Waters by Means of Natural Zeolites, Water. Res, 18: 1501-1507 (1984).
[27] Peric J., Trgo M., Vukojevic Medvidovic N., Removal of Zinc, Copper and Lead by Natural Zeolite-a Comparison of Adsorption Isotherme, Wat. Resear., 38: 1893-1899 (2004).
[28] Karadag D., Koc Y., Turan M., Ozturk M., A Comparative Study of Linear and Non-Linear Regression Analysis for Ammonium Exchange by Clinoptilinite Zeolite, J. Hazrd. Mater., 144: 432-437 (2007).
[30] Chowdhury, S., Misra, R., Kushwaha, P., Das, P., Optimum Sorption Isotherm by Linear and Nonlinear Methods for Safarin onto Alkali-Treated Rice Husk , Bioremed. J.15(2): 77-89 (2011).
[31] Boldizsar N., Carmen M., Andrada M., Cerasella I., Barbu-Tudoran L., Cornelia M., Linear and Nonlinear Regression Analysis for Heavy Metals Removal Using Agaricus Bisporus Macrofungus, Arab. J. Chem., 10: S3569-S3579 (2017).
[33] Lamgmuir I., The Constitution and Fundamental Properties of Solids and Liquids, Part 1. Solids,
J. Am. Chem. Soc 38: 2221-2295 (1916).
[35] Freundlich H., Über Die Adsorption in Losungen (Adsorption in Solution),Zeitsch. Phys. Chem., 57: 385–470 (1906).
[37] Nibou D., Khemaissia S., Amokrane S., Barkat M., Chegrouche S., Mellah A., Removal of UO22+ onto Synthetic NaA Zeolite. Characterization, Equilibrium and Kinetic Studies, Chem. Eng. J., 172(1): 296-305 (2011).
[39] Redlich O., Peterson D.L., A Useful Adsorption Isotherm, J. Phys. Chem. 63: 1024–1026(1959).
[40] Sips R., On the Structure of a Catalyst Surface, J. Chem. Phys. 16: 490–495 (1948).
[41] Fritz W., Schlunder E.U., Simultaneous Adsorption Equilibria of Organic Solutes in Dilute Aqueous Solutions on Activated Carbon, Chem. Eng. Sci., 29: 1279–1282 (1974).
[43] Amokrane S., Rebiai R., Nibou D., Behaviour of Zeolite A, Faujasites X and Y Molecular Sieves in Nitrogen Gas Adsorption, J. Appl. Sci., 7: 1985-1988 (2007).
[44] Baudu M., “Study of Interactions Solute-Fibres of Active Carbon. Application and Regeneration”, Ph.D. Thesis, University of Rennes I, France (1990).
[45] Bergaya F., Theng B.K.G., Lagaly G., General Introduction Clays, Clay Minerals and Clay Science, Handbook of Clay Science: Develop. Clay Sci., 1: 1-18 (2006).
[46] Low K.S., Lee C.K., Kek K.L., Removal of Chromium VI from Aqueous Solution, Bio. Techn., 54: 133-139 (1995).
[48] Al-Harahsheh M., Shawabkeh R., Al-Harahsheh A., Tarawneh K., Batiha M.M., Surface Modification and Characterization of Jordanian Kaolinite: Application for Lead Removal from Aqueous Solutions, Appl. Surf. Sci. 255:  8098–8103 (2009).
[49] Amer M.W., Khalili F.I., Awwad A.M., Adsorption of Lead, Zinc and Cadmium Ions on Polyphosphate-Modified Kaolinite Clay, J. Environ. Chem. Ecotoxicol. 2:  1–8 (2010).
[50] Sprynskyy M., Buszewski B., Terzyk A.P., Namiesnik J., Study of the Selection Mechanism of Heavy Metal (Pb2+, Cu2+, Ni2+, and Cd2+) Adsorption on Clinoptilolite, J. Colloid Interface Sci. 304: 21–28 (2006).
[51]  Gupta S.S., Bhattacharyya K.G., Immobilization of Pb(II), Cd(II) and Ni(II) Ions on Kaolinite and Montmorillonite Surfaces from Aqueous Medium, J. Environ. Manage. 87:46–58. (2008) 
[52] Unuabonah E.I., Adebowale K.O., Olu-Owolabi B.I., Yang L.Z., Comparison of Sorption of Pb2+ and Cd2+ on Kaolinite Clay and Polyvinyl Alcohol-Modified Kaolinite Clay, Adsorption 14: 791–803 (2008).
[53] Unuabonah E.I., Adebowale K.O., Olu-Owolabi B.I., Yang L.Z., Kong L.X., Adsorption of Pb (II) and
Cd (II) from Aqueous Solutions onto Sodium Tetraborate-Modified Kaolinite Clay: Equilibrium and Thermodynamic Studies,
Hydrometallurgy, 93: 1–9 (2008).
[54] Jitniyom K., Suddhiprakarn A., Kheoruenromne I., “Adsorption of Lead, Zinc, Copper and Cadmium
of Smectite”, Proceedings of the 50th Kasetsart University Annual Conference,"
Vol. 2, Kasetsart University, Thailand, pp. 136–143 (2012)