Experimental Study of Effects of GO-SiO2-TiO2–SDS Hybrid Nanofluids on Interfacial Tension by Du Noüy Ring Method

Document Type : Research Article

Authors

1 Department of Petroleum Engineering, Faculty of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Petroleum Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Abadan, I.R. IRAN

Abstract

This research aimed to prepare and utilize a novel hybrid nanofluid (GO-SiO2-TiO2–SDS) to significantly reduce the InterFacial Tension (IFT) to a level lower than the IFT value of the SDS surfactant solution at the Critical Micelle Concentration (CMC) point. Accordingly, the GO-SiO2-TiO2 nanocomposite was synthesized, and its properties were evaluated through six different analyses, including Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDXS), Map Analysis, Fourier Transform InfraRed (FT-IR), spectroscopy X-Ray Diffraction (XRD),
and ThermoGravimetric Analysis (TGA). To assess the effects of GO-SiO2-TiO2–SDS hybrid nanofluids on IFT reduction, SDS surfactant solutions were prepared at varying concentrations of SDS (0, 200, 500, 1000, 2000, 3000, 4000, 5000, and 6000 ppm), and 500 ppm was determined as the CMC. Different concentrations of the GO-SiO2-TiO2 nanocomposite (100, 500, 1500, and 2500 ppm) were separately added to deionized water, and then the SDS surfactant was added at the CMC value to prepare hybrid nanofluids. The results of IFT measurements reported by the Du Noüy ring method indicated that IFT values at the interfaces between 500-ppm SDS surfactant solution/kerosene and (2500 ppm GO-SiO2-TiO2–500 ppm SDS) hybrid nanofluid/kerosene decreased from 23.59 mN/m to 2.48 mN/m and 0.51 mN/m, respectively. Therefore, using the GO-SiO2-TiO2–SDS hybrid nanofluid could reduce the IFT value to a level lower than that of the SDS surfactant solution at the CMC point.

Keywords

Main Subjects


[1] Chamkha A.J., Armaghani T., Mansour M.A., Rashad A.M., Kargarsharifabad H., MHD Convection of an Al2O3-Cu/Water Hybrid Nanofluid in an Inclined Porous Cavity with Internal Heat Generation/Absorption, Iran. J. Chem. Chem. Eng. (IJCCE), 41(3): 936-956 (2022).
[2] Ghorbany M., Abedini A., Kargarsharifabad H., A Numerical Investigation of Encapsulated Phase Change Materials Melting Process via Enthalpy-Porosity Approach, Iran. J. Chem. Chem. Eng. (IJCCE), 42(7): 2275-2285 (2022).
[3] Chegenizadeh N., Saeedi A., Xie Q., Application of Nanotechnology for Enhancing Oil Recovery-A Review, Petroleum, 2(4): 324-333 (2016).
[4] Aziz H., Tunio S.Q., Enhancing Oil Recovery Using Nanoparticles-A Review, Adv. Nat. Sci.: Nanosci. Nanotechnol., 10(3): 033001 (2019).
[5] Kamal M.S., Adewunmi A.A., Sultan A.S., Al-Hamed M.F., Mehmood U., Recent Advances in Nanoparticles Enhanced Oil Recovery: Rheology, Interfacial Tension, Oil Recovery, and Wettability Alteration, J. Nanomater., 2017: 2473175 (2017).
[7] Khoramian R., Ramazani A., Hekmatzadeh M., Kharrat R., Asadian E., Graphene Oxide Nanosheets for Oil Recovery, ACS Appl. Nano Mater., 2(9): 5730-5742 (2019).
[8] Mohajeri M., Hemmati M., Shekarabi A.S., An Experimental Study on Using a Nanosurfactant in an EOR Process of Heavy Oil in a Fractured Micromodel, J. Pet. Sci. Eng., 126: 162-173 (2015).
[9] Tavakkoli O., Kamyab H., Junin R., Ashokkumar V., Shariati A., Mohamed A.M., SDS-Aluminum Oxide Nanofluid for Enhanced Oil Recovery: IFT, Adsorption, and Oil Displacement Efficiency, ACS Omega, 7(16): 14022-14030 (2022).
[10] Kazemzadeh Y., Sharifi M., Riazi M., Rezvani H., Tabaei M., Potential Effects of Metal Oxide/SiO2 Nanocomposites in EOR Processes at Different Pressures, Col. Sur. Ph. Eng. Asp., 559: 372-384 (2018).
[11] Garmroudi A., Kheirollahi M., Mousavi S.A., Fattahi M., Mahvelati E.H., Effects of Graphene Oxide/TiO2 Nanocomposite, Graphene Oxide Nanosheets and Cedr Extraction Solution on IFT Reduction and Ultimate Oil Recovery from a Carbonated Rock, Petroleum, 8(4): 476-482 (2022).
[12] Omidi A., Manshad A.K., Moradi S., Ali J.A., Sajadi S.M., Keshavarz A., Smart- and Nano-Hybrid Chemical EOR Flooding Using Fe3O4/Eggshell Nanocomposites, J. Mol. Liq., 316: 113880 (2020).
[13] Nourinia A., Manshad A.K., Shadizadeh S.R., Ali J.A., Iglauer S., Keshavarz A., Mohammadi A.H., Ali M., Synergistic Efficiency of Zinc Oxide/Montmorillonite Nanocomposites and a New Derived Saponin in Liquid/Liquid/Solid Interface-Included Systems: Application in Nanotechnology-Assisted Enhanced Oil Recovery, ACS Omega, 7(29): 24951-24972 (2022).
[14] Asl F.O., Zargar G., Manshad A.K., Iglauer S., Keshavarz A., Experimental Investigation and Simulation for Hybrid of Nanocomposite and Surfactant as EOR Process in Carbonate Oil Reservoirs, Fuel, 319: 123591 (2022).
[15] Jafari S., Sillanpää M., Adsorption of Dyes onto Modified Titanium Dioxide, “Advanced Water Treatment", 85-160 Elsevier, Amsterdam, The Netherlands (2020).
[16] Jung M.R., Horgen F.D., Orski S.V., Rodriguez C.V., Beers K.L., Balazs G.H., Jones T.T., Work T.M., Brignac K.C., Royer S., Hyrenbach D., Jensen B.A., Lynch J.M., Validation of ATR FT-IR to Identify Polymers of Plastic Marine Debris, Including Those Ingested by Marine Organisms, Mar. Pollut. Bull., 127: 704-716 (2018).
[17] Khalil M.W., Eldin T.A.S., Hassan H.B., El-Sayed K., Hamid Z.A., Electrodeposition of Ni–GNS–TiO2 Nanocomposite Coatings as Anticorrosion Film for Mild Steel in Neutral Environment, Surf. Coat. Technol., 275: 98-111 (2015).
[18] Dong S., Dou X., Mohan D., Pittman C.U., Luo J., Synthesis of Graphene Oxide/Schwertmannite Nanocomposites and Their Application in Sb(V) Adsorption from Water, Chem. Eng. J., 270: 205-214 (2015).
[19] Wei X., Li Q., Hao H., Yang H., Li Y., Sun T., Li X., Preparation, Physicochemical and Preservation Properties of Ti/ZnO/In Situ SiOx Chitosan Composite Coatings, J. Sci. Food Agric., 100(2): 570-577 (2020).
[20] Liu X., Wang X., Li J., Wang X., Ozonated Graphene Oxides as High Efficient Sorbents for Sr(II) and U(VI) Removal from Aqueous Solutions, Sci. China Chem., 59: 869-877 (2016).
[21] Mohan S., Kumar V., Singh D.K., Hasan S.H., Effective Removal of Lead Ions Using Graphene Oxide-MgO Nanohybrid from Aqueous Solution: Isotherm Kinetic and Thermodynamic Modeling of Adsorption, J. Environ. Chem. Eng., 5(3): 2259-2273 (2017).
[22] Shahmoradi A.R., Talebibahmanbigloo N., Nickhil C., Nisha R., Javidparvar A.A., Ghahremani P., Bahlakeh G., Ramezanzadeh B., Molecular-MD/Atomic-DFT Theoretical and Experimental Studies on the Quince Seed Extract Corrosion Inhibition Performance on the Acidic-Solution Attack of Mild-Steel, J. Mol. Liq., 346: 117921 (2022).
[23] Lushinga N., Cao L., Dong Z., Effect of Silicone Oil on Dispersion and Low-Temperature Fracture Performance of Crumb Rubber Asphalt, Adv. Mater. Sci. Eng., 2019: 8602562 (2019).
[24] Sethy N., Arif Z., Mishra P.K., Kumar P., Synthesis of SiO2 Nanoparticle from Bamboo Leaf and Its Incorporation in PDMS Membrane to Enhance Its Separation Properties, J. Polym. Eng., 39(7): 679-687 (2019).
[25] Rocha Segundo I.G.D., Dias E.A.L., Fernandes F.D.P., Freitas E.F.D., Costa M.F., Carneiro J.O., Photocatalytic Asphalt Pavement: The Physicochemical and Rheological Impact of TiO2 Nano/Microparticles and ZnO Microparticles onto the Bitumen, Road Mater. Pavement Des., 20(6): 1452-1467 (2019).
[26] Bineesh K.V., Kim D.K., Park D.W., Synthesis and Characterization of Zirconium-Doped Mesoporous Nano-Crystalline TiO2, Nanoscale, 2(7): 1222-1228 (2010).
[27] Yu H., Zhang B., Bulin C., Li R., Xiang R., High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method, Sci. Rep., 6: 36143 (2016).
[28] Sharifi Z., Pakshir M., Amini A., Rafiei R., Hybrid Graphene Oxide Decoration and Water-Based Polymers for Mild Steel Surface Protection in Saline Environment, J. Ind. Eng. Chem., 74: 41-54 (2019).
[29] Ramezanzadeh M., Ramezanzadeh B., Mahdavian M., Bahlakeh G., Development of Metal-Organic Framework (MOF) Decorated Graphene Oxide Nanoplatforms for Anti-Corrosion Epoxy Coatings, Carbon, 161: 231-251 (2020).
[30] Ma Y., Di H., Yu Z., Liang L., Lv L., Pan Y., Zhang Y., Yin D., Fabrication of Silica-Decorated Graphene Oxide Nanohybrids and the Properties of Composite Epoxy Coatings Research, Appl. Surf. Sci., 360: 936-945 (2016).
[31] Sun J., Xu Z., Li W., Shen X., Effect of Nano-SiO2 on the Early Hydration of Alite-Sulphoaluminate Cement, Nanomaterials, 7(5): 102 (2017).
[32] Liang Y., Ouyang J., Wang H., Wang W., Chui P., Sun K., Synthesis and Characterization of Core-Shell Structured SiO2@YVO4:Yb3+, Er3+ Microspheres, Appl. Surf. Sci., 258(8): 3689-3694 (2012).
[33] Iatridi Z., Evangelatou K., Theodorakis N., Angelopoulou A., Avgoustakis K., Tsitsilianis C., Multicompartmental Mesoporous Silica/Polymer Nanostructured Hybrids: Design Capabilities by Integrating Linear and Star-Shaped Block Copolymers, Polymers, 12(1): 51 (2020).
[34] Massard C., Bourdeaux D., Raspal V., Feschet-Chassot E., Sibaud Y., Caudron E., Devers T., Awitor K.O., One-pot Synthesis of TiO2 Nanoparticles in Suspensions for Quantification of Titanium Debris Release in Biological Liquids, Adv. Nano., 1(3): 86-94 (2012).
[36] Vallejo W., Rueda A., Diaz-Uribe C., Grande C., Quintana P., Photocatalytic Activity of Graphene Oxide–TiO2 Thin Films Sensitized by Natural Dyes Extracted from Bactris Guineensis, R. Soc. Open Sci., 6(3): 181824 (2019).
[40] Ahmadi M., Chen Z., Challenges and Future of Chemical Assisted Heavy Oil Recovery Processes, Adv. Colloid Interface Sci., 275: 102081 (2020).