A Numerical Investigation of Encapsulated Phase Change Materials Melting Process via Enthalpy-Porosity Approach

Document Type : Research Article

Authors

1 Energy and Sustainable Development Research Center, Semnan Branch, Islamic Azad University, Semnan, I.R. IRAN

2 Production and Recycling of Materials and Energy Research Center, Qom Branch, Islamic Azad University, Qom, I.R. IRAN

Abstract

Today, with the increasing need for energy and the limitation of fossil fuels as depleting and polluting sources of the environment, the need to use more renewable energy sources is felt. The use of PCM materials in buildings, power generation, food industry, and automotive applications is presented. This paper presents the melting process time of a Phase Change Material (PCM) to investigate the impact of various Heat Transfer Fluids (HTFs), using the coupled enthalpy-porosity method and VOF approach. The PCM that is considered is a hydrated salt, Sodium Nitrate (NaNO3) which is encapsulated in a stainless steel infinitely long cylindrical capsule and placed horizontally in a laminar cross flow arrangement with air and Therminol/VP-1 as the HTFs. The Finite-volume-based method has been employed to solve the governing equations for the heat transfer inside and outside the encapsulated PCM. With this technique, the algebraic equations (discretization)
are replaced by the governing equations. Then, a set of coupled nonlinear algebraic equations has been solved numerically. The results for the dynamic of the liquid/solid interface at different intervals during the PCM’s melting process exhibited that the heat transfer process inside the encapsulated PCM is influenced by HTF types, and PCM melting times are significantly impacted by the flow specifications of HTF on the surface of the capsule.

Keywords

Main Subjects


[1] Akbarzadeh M., Kalogiannis T., Jaguemont J., Jin L., Behi H., Karimi D., Beheshti H., Van Mierlo J., Berecibar M., A Comparative Study between Air Cooling and Liquid Cooling Thermal Management Systems for a High-Energy Lithium-Ion Battery Module, Appl. Therm. Eng., 198: 117503 (2021).
[3] Al-Hallaj S., Kizilel R., Lateef A., Sabbah R., Farid M., Rob Selman J., "Passive Thermal Management Using Phase Change Material (PCM) for EV and HEV Li-Ion Batteries", 2005 IEEE Veh. Power Propuls. Conf. VPPC, 376–380 (2005).
[4] Al-kouz W., Aissa A., Uma S.S., Prakash M., Kolsi L., Moria H., Jamshed W., Younis O., Effect of a Rotating Cylinder on the 3D MHD Mixed Convection in a Phase Change Material Filled Cubic Enclosure, Sustain. Energy Technol. Assessments, 51: 101879 (2022).
[5] Behi H., Behi M., Ghanbarpour A., Karimi D., Azad A., Ghanbarpour M., Behnia M., Enhancement of the Thermal Energy Storage Using Heat-Pipe-Assisted Phase Change Material, Energies, 14(19): 6176 (2021).
[6] Behi H., Karimi D., Gandoman F.H., Akbarzadeh M., Khaleghi S., Kalogiannis T., Hosen M.S., Jaguemont J., Van Mierlo J., Berecibar M., PCM Assisted Heat Pipe Cooling System for the Thermal Management of an LTO Cell for High-Current Profiles, Case Stud. Therm. Eng., 25: 100920 (2021).
[7] Behi H., Karimi D., Jaguemont J., Gandoman F.H., Kalogiannis T., Berecibar M., Van Mierlo J., Novel Thermal Management Methods to Improve the Performance of the Li-Ion Batteries in High Discharge Current Applications, Energy, 224: 120165 (2021).
[8] Behi H., Karimi D., Youssef R., Suresh Patil M., Van Mierlo J., Berecibar M., Comprehensive Passive Thermal Management Systems for Electric Vehicles, Energies, 14(13): 3881 (2021).
[9] Cao Y., Ayed H., Togun H., Alias H., Bouzgarrou S.M., Waehayee M., Marzouki R., Observation the Melting Process of the Phase Change Material inside a Half-Cylindrical with Thermal Non-Equilibrium Porous Media: CFD Simulation, Case Stud. Therm. Eng., 28: 101496 (2021).
[10] Chen F., Huang R., Wang C., Yu X., Liu H., Wu Q., Qian K., Bhagat R., Air and PCM Cooling for Battery Thermal Management Considering Battery Cycle Life, Appl. Therm. Eng., 173: 115154 (2020).
[11] Chen H., Abidi A., Hussein A.K., Younis O., Degani M., Heidarshenas B., Investigation of the Use of Extended Surfaces in Paraffin Wax Phase Change Material in Thermal Management of a Cylindrical Lithium-Ion Battery: Applicable in the Aerospace Industry, J. Energy Storage, 45: 103685 (2022).
[13] Essa F.A., Abdullah A.S., Alawee W.H., Alarjani A., Alqsair U.F., Shanmugan S., Omara Z.M., Younes M.M., Experimental Enhancement of Tubular Solar Still Performance Using Rotating Cylinder, Nanoparticles’ Coating, Parabolic Solar Concentrator, and Phase Change Material, Case Stud. Therm. Eng., 29: 101705 (2022).
[14] Jaguemont J., Karimi D., Van Mierlo J., Investigation of a Passive Thermal Management System for Lithium-Ion Capacitors, IEEE Trans. Veh. Technol., 68(11): 10518–10524 (2019).
[15] Javani N., Dincer I., Naterer G.F., Yilbas B.S., Heat Transfer and Thermal Management with PCMs in a Li-Ion Battery Cell for Electric Vehicles, Int. J. Heat Mass Transf., 72: 690–703 (2014).
[16] Jeong J.H., Hah S., Kim D., Lee J.H., Kim S.M., Thermal Analysis of Cylindrical Heat Sinks Filled with Phase Change Material for High-Power Transient Cooling, Int. J. Heat Mass Transf., 154: 119725 (2020).
[17] Karimi D., Behi H., Akbarzadeh M., Khaleghi S., Mierlo J. Van, Berecibar M., Optimization of 1D/3D Electro-Thermal Model for Liquid-Cooled Lithium-Ion Capacitor Module in High Power Applications, Electricity, 2(4): 503–523 (2021).
[18] Karimi D., Behi H., Akbarzadeh M., Mierlo J. Van, Berecibar M., A Novel Air-Cooled Thermal Management Approach towards High-Power Lithium-Ion Capacitor Module for Electric Vehicles, Energies, 14(21): 7150 (2021).
[19] Karimi D., Behi H., Akbarzadeh M., Mierlo J. Van, Berecibar M., Holistic 1D Electro-Thermal Model Coupled to 3D Thermal Model for Hybrid Passive Cooling System Analysis in Electric Vehicles, Energies, 14(18): 5924 (2021).
[20] Karimi D., Behi H., Jaguemont J., Sokkeh M.A., Kalogiannis T., Hosen M.S., Berecibar M., Van Mierlo J., Thermal Performance Enhancement of Phase Change Material Using Aluminum-Mesh Grid Foil for Lithium-Capacitor Modules, J. Energy Storage, 30 (2020).
[21] Karimi D., Hosen M.S., Behi H., Khaleghi S., Akbarzadeh M., Van Mierlo J., Berecibar M., A Hybrid Thermal Management System for High Power Lithium-Ion Capacitors Combining Heat Pipe with Phase Change Materials, Heliyon, 7(8): e07773 (2021).
[22] Karimi D., Jaguemont J., Behi H., Berecibar M., Van Den Bossche P., Van Mierlo J., Passive Cooling Based Battery Thermal Management Using Phase Change Materials for Electric Vehicles, EVS33 Int. Electr. Veh. Symp., 1–12 (2020).
[23] Karimi D., Khaleghi S., Behi H., Beheshti H., Hosen M.S., Akbarzadeh M., Van Mierlo J., Berecibar M., Lithium-Ion Capacitor Lifetime Extension through an Optimal Thermal Management System for Smart Grid Applications, Energies, 14(10) (2021).
[25] Lan H., Dutta S., Vahedi N., Neti S., Romero C.E., Oztekin A., Nappa M., Ruales R., Graphite Foam Infiltration with Mixed Chloride Salts as PCM for High-Temperature Latent Heat Storage Applications, Sol. Energy, 209: 505–514 (2020).
[26] Ling Z., Wang F., Fang X., Gao X., Zhang Z., A Hybrid Thermal Management System for Lithium Ion Batteries Combining Phase Change Materials with Forced-Air Cooling, Appl. Energy, 148: 403–409 (2015).
[28] Parhizi M., Jain A., Analytical Modeling and Optimization of Phase Change Thermal Management of a Li-Ion Battery Pack, Appl. Therm. Eng., 148: 229–237 (2019).
[31] Rao Z., Wang S., A Review of Power Battery Thermal Energy Management, Renew. Sustain. Energy Rev., 15(9): 4554–4571 (2011).
[32] Rudman M., Volume-Tracking Methods for Interfacial Flow Calculations, Int. J. Numer. Methods Fluids, 24(7): 671–691 (1997).
[35] Selimefendigil F., Öztop H.F., Thermal Management and Performance Improvement by Using Coupled Effects of Magnetic Field and Phase Change Material for Hybrid Nanoliquid Convection through a 3D Vented Cylindrical Cavity, Int. J. Heat Mass Transf., 183: 122233 (2022).
[36] Shafee S.M., Gnanasekaran K., Ravikumar Solomon G., Arshi Banu P.S., Analysis of Heat Transfer Mechanisms During Energy Storage in a Vertical Cylindrical Unit Filled with Nano Enhanced Phase Change Material for Free Cooling Applications, Mater. Today Proc., 22: 743–750 (2020).
[37] Shaker M.Y., Sultan A.A., El Negiry E.A., Radwan A., Melting and Solidification Characteristics of Cylindrical Encapsulated Phase Change Materials, J. Energy Storage, 43: 103104 (2021).
[38] Sharma A., Trivedi M., Agarwal K., Nirmalkar N., Thermal Energy Storage in a Confined Cylindrical Heat Source Filled with Phase Change Materials, Int. J. Heat Mass Transf., 178: 121603 (2021).
[42] Sonker V.K., Chakraborty J.P., Sarkar A., Singh R.K., Solar Distillation Using Three Different Phase Change Materials Stored in a Copper Cylinder, Energy Reports, 5: 1532–1542 (2019).
[43] Sridharan S., Srikanth R., Balaji C., Multi Objective Geometric Optimization of Phase Change Material Based Cylindrical Heat Sinks with Internal Stem and Radial Fins, Therm. Sci. Eng. Prog., 5: 238–251 (2018).
[44] Tomita S., Celik H., Mobedi M., Thermal Analysis of Solid/Liquid Phase Change in a Cavity with One Wall at Periodic Temperature, Energies, 14(18): 5957 (2021).