Computational Study of the Mechanism and Reactivity of -Himachalene in Presence of Carbenes Using DFT

Document Type : Research Article


1 Laboratory of Biomolecular Chemistry, Natural Substances and Reactivity, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech, MOROCCO

2 Higher School of Education and Training, Berrechid, Hassan First University, Settat, MOROCCO

3 Laboratory of Process, Signals, Industrial Systems, Computer Science, Superior School of Technology, Cadi Ayyad University, Dar Si-Aïssa Road, 46000, BP 89, Safi, MOROCCO

4 Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, B.P.145, 25000 Khouribga, MOROCCO


The reactivity of the bicyclic sesquiterpene β-himachalene which is considered one of the main constituents of the essential oil of the Atlas cedar (Cedrus atlantica) and its derivatives have been studied extensively, in order to prepare new biological products. The title compound, C17H26Br2 was synthesized from the β-himachalene with :CBr2, in dichloromethane (DCM) and with :CH2 cycloaddition reaction, in diethyl ether. Density functional theory (DFT) calculations at the B3LYP/6-311+G(d,p) computational level account for the total chemo- and regioselectivity, in complete agreement with the experimental outcomes.


Main Subjects

[4] Ezzoubi Y., El-Akhal F., Farah A., Taghzouti K., El Ouali Lalami A., Chemical Composition and Larvicidal Activity of Moroccan Atlas Cedar (Cedrus atlantica Manetti) Against Culex pipiens (Diptera: Culicidae), J App Pharm Sci., 7: 30-34 (2017).
[5] Eljamili H., Auhmani A., Dakir M., Lassaba E., Benharref A., Pierrot M., Chiaroni A., Riche C., Oxydation Et Addition Des Dihalocarbènes Sur Le β-himachalène, Tetrahedron Lett., 43: 6645-6648 (2002).
[6] Lassaba E., El Jamili H., Chekroun A., Benharref A., Chiaroni A., Riche C., Lavergne J.P., Regio and Stereoselective Epoxidation of Cis- and Trans-Himachalenes, Synth. Commun., 28: 2641-2651 (1998).
[7] Politzer P., Murray J., The Fundamental Nature and Role of the Electrostatic Potential in Atoms and Molecules, Theor Chem Acc., 108: 134–142 (2002).
[8] Murray J., Politzer P., The Electrostatic Potential: An Overview, Wires.Comput Mol Sci., 1: 153-163 (2011).
[9] Morell C., Grand A., Toro-Labbé A., Theoretical Support for Using the Δf(r) Descriptor, Chem. Phys. Lett., 425: 342-346 (2006).
[10] Paul Ayers W., Robert Parr G., Ralph Pearson G., Elucidating the Hard/Soft Acid/Base Principle: A Perspective Based on Half-Reactions, The Journal of Chemical Physics., 124: 1-8 (2006).
[11] Cárdenas C., Rabi N., Ayers P., Morell C., Jaramillo P., Fuentealba P., Chemical Reactivity Descriptors for Ambiphilic Reagents: Dual Descriptor, Local Hypersoftness, and Electrostatic Potential, J. Phys. Chem. A., 113: 8660-8667 (2009).
[12] Safavi Rad Z., Pordel M., Davoodnia A., Synthesis, Spectral Characterization and DFT Calculations of New Co(II) Complexes Derived from Benzimidazoles, Iran. J. Chem. Chem. Eng. (IJCCE), 38: 111-120 (2019).
[13] Ghashghaee M., Ghambarian M., Protonation of Propene on Silica-Grafted Hydroxylated Molybdenum and Tungsten Oxide Metathesis Catalysts: A DFT Study, Iran. J. Chem. Chem. Eng. (IJCCE)., 38: 175-187 (2019).
[14] Geerlings P., De Proft F., Langenaeker W., Conceptual Density Functional Theory, Chem Rev., 103: 1793–1874 (2003).
[15] Zevatskii Y., Samoilov D., Some Modern Methods for Estimation of Reactivity of Organic Compounds, Russ J Organic Chem., 43: 483–500 (2007).
[16] Becke A.D., Density-Functional Thermochemistry. III. the Role of Exact Exchange, J. Chem. Phys, 98: 5648-5652 (1993).
[17] Frisch M.J., Trucks G.W., Schlegel H.B. et al., Gaussian 09, Gaussian, Pittsburgh, Pa, USA, (2009).
[18] H. B. Schlegel, Optimization of Equilibrium Geometries and Transition Structures, J. Comput. Chem., 3: 214-2018 (1982)
[19] Kumar Pandey A., Narayan Mishra V., Singh V., Biological, Electronic, NLO, NBO, TD-DFT and Vibrational Analysis of 1-benzyl-4-formyl-1H-pyrrole-3-carboxamide, Iran. J. Chem. Chem. Eng. (IJCCE), 39: 233-242 (2020).
[20] Hammal R., El Hamidi S., El Khattabi H., Chekroun A., Benharref A., El Hajbi A., A DFT Study of the Products Nitration Obtained by the Isocadalene Acylation in Dichloromethane, RJPBCS., 4: 34-41 (2019).
[21] Irfan A., Assiri M., Al-Sehemi A.G., Exploring the Optoelectronic and Charge Transfer Performance of Diaza[5]Helicenes at Molecular and Bulk Level, Organic Electronics, 57: 211-220 (2018).
[22] Asif M., Irfan A., Effect of Fluorination on Exciton Binding Energy and Electronic Coupling in Small Molecule Acceptors for Organic Solar Cells, Computational and Theoretical Chemistry, 1179: 1-5 (2020).
[23] Parr R.G., Donnelly R.A., Levy M., Palke W.E., Electronegativity: The Density Functional Viewpoint, J. Chem. Phys., 68: 3801-3807 (1978).
[24] Parr R.G., Szentpaly L.V., Liu S., Electrophilicity Index, J. Am. Chem. Soc., 121: 1922-1924 (1999).
[25] Domingo Luis R., Perez P., Saez J. A., Understanding the Local Reactivity in Polar Organic Reactions Through Electrophilic and Nucleophilic Parr Functions, RSC Advances, 3: 1486–14940 (2013).
[26] Andijani N., Al-Qurashi O., Wazzan N., Irfan A., Modeling of Efficient Pyrene-Core Substituted with Electron-Donating Groups as hole-transporting Materials in Perovskite Solar Cells, Solar Energy, 188: 898-912 (2019).
[27] Lakbaibi Z., Jaafar A., El Ayouchia H.B., Tabyaoui M., Boussaoud A., Reactivity and Mechanism of Nucleophilic Addition Reaction of Amine with Alkene: A Systematic DFT Study, Mediterr. J. Chem., 8: 25-29 (2019).
[28] Hammal R., Zoubir M., Benharref A., El Hajbi A., Natural Bond Orbital Population Analysis of α-trans-himachalene, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6: 423-432 (2017).