Synthesis, Spectral Characterization and DFT Calculations of New Co(II) Complexes Derived from Benzimidazoles

Document Type : Research Article


Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, I.R. IRAN


The synthesis, characterization and quantum-chemical investigations of two new Co(II) complexesderived from fluorescent benzimidazoles have been reported. Two new fluorescentheterocyclic ligands were synthesized from the reduction of imidazo[4',5':3,4]benzo[1,2-c]isoxazole derivatives, and characterized by elemental analyses, IR, mass, and NMR spectra. Coordination of the bidentate ligands with Co(II) cation produced orange complexes. The structures of the complexes have been established by spectral and analytical data as well as Job’s method. The photophysical properties of the new ligands and Co(II) complexes were characterized by UV-Vis and fluorescence spectroscopies. An efficient charge transfer from the p-orbital of ligand to the Co(II) d-orbital could be proposed as the main reason for the color of the new complexes. To gain insight into geometry, spectral properties and the energy difference between the HOMO and LUMO frontier orbitals of the ligands and Co(II) complexes, the DFT calculations at the B3LYP/6-311++G(d,p) level were employed. The DFT-calculated spectral properties were in good agreement with the experimental values and confirmed the suitability of the optimized geometries for cobalt complexes.


Main Subjects

[1] Li J., Wang J., Wang D., Guo G., Yeung K.W., Zhang X., Liu X., Band Gap Engineering of itania Film through Cobalt Regulation for Oxidative Damage of Bacterial Respiration and Viability, ACS Appl. Mater. Interfaces, 9(33): 27475-27490 (2017).
[2] Goleij M., Fakhraee H., Response Surface Methodology Optimization of Cobalt (II) and Lead (II) Removal from Aqueous Solution Using MWCNT-Fe3O4 Nanocomposite. Iran. J. Chem. Chem. Eng. (IJCCE), 36(5): 129-141 (2017).
[3] Hartikainen E.S., Hatakka A., Kahkonen M.A., Impact of C admium., Chromium., Cobalt., Lithium and Manganese to the Growth of Fungi and Production of Enzymes, Expert Opin. Environ. Biol., 2(3): 1-7 (2013).
[6] Mil'grom A.E., Chegolya A.S., Filippova A.V., Vladyko G.V., Karako N.I., Synthesis and Antivirus Activity of Unprotonated Complex Salts of Amino Acids with Nickel and Cobalt. Pharm. Chem. J., 18(3): 179-182 (1984).
[7] Jayaraju D., Gopal Y.V., Kondapi A.K., Topoisomerase II Is A Cellular Target For Antiproliferative Cobalt Salicylaldoxime Complex, Arch. Biochem. Biophys., 369(1): 68-77 (1999).
[8] Wang N., Lin Q.Y., Feng J., Zhao Y.L., Wang Y.J., Li S.K., Crystal Structures., DNA Interaction and Antiproliferative Activities of the Cobalt (II) and Zinc (II) Complexes of 2-amino-1., 3., 4-thiadiazole with Demethylcantharate, Inorganica. Chim. Acta., 363 (13):3399-3406 (2010).
[9] Munteanu C.R., Suntharalingam K., Advances in Cobalt Complexes as Anticancer Agents, Dalton Trans., 44 (31):13796-13808 (2015).
[10] Ghosh P., Chowdhury A.R., Saha S.K., Ghosh M., Pal M., Murmu N.C., Banerjee P., Synthesis and Characterization of Redox Non-innocent Cobalt (III) Complexes of a O., N., O Donor Ligand: Radical Generation., Semi-Conductivity., Antibacterial and Anticancer Activities, Inorganica Chim. Acta., 429:99-108 (2005).
[11] King A.P., Gellineau H.A., Ahn J.E., MacMillan S.N., Wilson J.J., Bis (thiosemicarbazone) Complexes of Cobalt (III). Synthesis., Characterization., and Anticancer Potential, Inorg. Chem., 56(11): 6609-6623 (2017) .
[12] Banerjee S., Chakravarty A.R., Metal Complexes of Curcumin for Cellular Imaging., Targeting., and Photoinduced Anticancer Activity, Acc. Chem. Res., 48(7): 2075-2083 (2015).
[13] Wasylenko D.J., Ganesamoorthy C., Borau-Garcia J., Berlinguette C.P., Electrochemical Evidence for Catalyticwater Oxidation Mediated by a High-valent Cobalt Complex, Chem. Commun., 47(14): 4249-4251 (2011).
[14] Farmacijo F.Z., Koren Ž., “Sinteza In Biokemijsko Preizkušanje Zaviralcev Benzoatne 4-Monooksigenaze Kot Novih Protiglivičnih Spojin”, Doctoral Dissertation, Univerza v Ljubljani, Fakulteta za Farmacijo, (2014).
[15] Peng C.H., Yang T.Y., Zhao Y., Fu X., Reversible Deactivation Radical Polymerization Mediated by Cobalt Complexes: Recent Progress and Perspectives, Org. Biomol. Chem., 12 (43): 8580-8587 (2014).
[16] Srimani D., Mukherjee A., Goldberg A.F., Leitus G., Diskin‐Posner Y., Shimon L.J., Ben David Y., Milstein D., Cobal Catalyzed Hydrogenation of Esters to Alcohols: Unexpected Reactivity Trend Indicates Ester Enolate Intermediacy, Angew. Chem. Int., 54(42):12357-12360 (2015).
[17] Friedfeld M.R., Margulieux G.W., Schaefer B.A., Chirik P.J., Bis (phosphine) Cobalt Dialkyl Complexes for Directed Catalytic Alkene Hydrogenation, J. Am. Chem. Soc., 136 (38): 13178-13181 (2014).
[18] Rulev Y.A., Larionov V.A., Lokutova A.V., Moskalenko M.A., Lependina O.G., Maleev V.I., North M., Belokon Y.N., ChiralCobalt (III) Complexes as Bifunctional Brønsted Acid–Lewis Base Catalysts for the Preparation of Cyclic Organic Carbonates, Chem. Sus. Chem., 9 (2): 216-222 (2016).
[19] Flores-Carrillo P., Velázquez-López J.M., Aguayo-Ortiz R., Hernández-Campos A., Trejo-Soto P.J., Yépez-Mulia L., Castillo R., Synthesis, Antiprotozoal Activity, and Chemoinformatic Analysis of 2-( "methylthio)-1H-benzimidazole-5-carboxamide Derivatives: Identification of new Selective Giardicidal and Trichomonicidal Compounds, Eur. J. Med. Chem., 137: 211-220 (2017).
[20] Siddiqui N., Alam M.S., Ali R., Yar M.S., Alam O., Synthesis of new benzimidazole and phenylhydrazinecarbothiomideHybrids and Their Anticonvulsant Activity, J. Med. Chem., 25 (7): 1390-1402 (2016).
[21] Siddiqui N., Alam M.S., Sahu M., Yar M.S., Alam O., Siddiqui M.J., Antidepressant., Analgesic Activity and SAR Studies of Substituted benzimidazoles, Asian J. Pharm. Clin. Res., 6 (3): 170-174 (2016).
[22] Ding A.J., Wu G.S., Tang B., Hong X., Zhu M.X., Luo H.R., Benzimidazole Derivative M084 Extends the Lifespan of Caenorhabditis Elegans in a DAF-16/FOXO-dependent Way, Mol. Cell Biochem., 426(1-2): 101-109 (2017).
[23] Saini S., Dhiman N., Mittal A., Kumar G., Synthesis and Antioxidant Activity of the 2-methyl benzimidazole, J. Drug Deliv. Ther., 6(3): 100-102 (2016).
[24] Zhang Y., Xu J., Li Y., Yao H., Wu X. Design., Synthesis and Pharmacological Evaluation of Novel NOReleasing Benzimidazole Hybrids as Potential Antihypertensive Candidate, Chem. Biol. Drug Des., 85 (5): 541-548 (2015).
[25] Vausselin T., Séron K., Lavie M., Mesalam A.A., Lemasson M., Belouzard S., Fénéant L., Danneels A., Rouillé Y., Cocquerel L., Foquet L., Identification of A New benzimidazole Derivative as an Antiviral Against Hepatitis C Virus, J. Virol.,  90(19): 8422-8434 (2016).
[27] Keller P., Müller C., Engelhardt I., Hiller E., Lemuth K., Eickhoff H., Wiesmüller K.H., Burger-Kentischer A., Bracher F., Rupp S., An Antifungal benzimidazole Derivative Inhibits Ergosterol Biosynthesis and Reveals Novel Sterols, Antimicrob. Agents Chemother., 59(10): 6296-6307 (2015).
[28] Gaba M., Singh S., Mohan C., Benzimidazole: An Emerging Scaffold for Analgesic and Anti-inflammatory Agents, Eur. J. Med. Chem., 76:494-505 (2014).
[29] Yang H., Ren Y., Gao X., Gao Y., Synthesis and Anticoagulant Bioactivity Evaluation of 1., 2., 5-trisubstituted benzimidazole Fluorinated Derivatives, Chem. Res. Chin. Univ., 32(6):973-978 (2016).
[30] Van Oosten M.J., Silletti S., Guida G., Cirillo V., Di Stasio E., Carillo P., Woodrow P., Maggio A., Raimondi G., A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato, Front. Plant. Sci., 8:1-14 (2017).
[31] Bansal Y., Silakari O., The Therapeutic Journey of benzimidazoles: A Review, Bioorg. Med. Chem., 20(21): 6208-6236 (2012).
[33] Rahimizadeh M., Pordel M., Bakavoli M., Rezaeian S., Eshghi H., Synthesis of A New Heterocyclic System—Fluoreno [1., 2-d] imidazol-10-one, Can. J. Chem., 87(6): 724-728 (2009).
[34] Lee C., Yang W., Parr RG., Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density, Phys. Rev. B., 37(2): 785-789 (1998).
[35] Frisch M.J., Trucks GW., Schlegel H.B., GAUSSIAN 03, Gaussian, Inc., Pittsburgh, PA, 11 JB Foresman and A. Frisch (2003).
[37] Vosburgh W.C., Cooper G.R., Complex ions. I. The Identification of Complex Ions in Solution by Spectrophotometric Measurements, J. Am. Chem. Soc., 63(2): 437-442 (1941).
[38] Saureu S., de Graaf C., TD-DFT Study of the Light-induced Spin Crossover of Fe (III) Complexes, Phys. Chem. Chem. Phys., 18(2): 1233-1244 (2016).
[40] Johnston H.M., Palacios P.M., Pierce B.S., Green K.N., Spectroscopic and solid-state Evaluations of Tetra- aza Macrocyclic Cobalt Complexes with Parallels to the Classic Cobalt (II) Chloride Equilibrium, J. Coord. Chem., 69(11-13): 1979-1989 (2016).
[41] Habib F., Luca O.R., Vieru V., Shiddiq M., Korobkov I., Gorelsky S.I., Takase M.K., Chibotaru L.F., Hill S., Crabtree R.H., Murugesu M., Influence of the Ligand Field on Slow Magnetization Relaxation Versus Spin Crossover in Mononuclear Cobalt Complexes, Angew. Chem. Int. Ed., 52(43): 11290-11293 (2013).