Enhanced Visible-Light-Driven Photodegradation of Rhodamine B over Ag2C2O4/Bi2MoO6 Nanocomposites

Document Type : Research Article

Authors

1 Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, THAILAND

2 Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, THAILAND

3 Program in Chemistry, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok 10600, THAILAND

4 School of Physics, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, INDIA

5 Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, THAILAND

6 Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, THAILAND

Abstract

In the present work, Ag2C2O4/Bi2MoO6 nanocomposites containing different weight contents of Ag2C2O4 were prepared by a deposition-precipitation method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). They revealed the presence of good crystalline monoclinic Ag2C2O4 nanoparticles distributed on orthorhombic Bi2MoO6 square nanoplates. The photocatalytic properties of Bi2MoO6 and Ag2C2O4/Bi2MoO6 samples were investigated by photodegradation of rhodamine B (RhB) under visible light irradiation. In this research, 10 wt% Ag2C2O4/Bi2MoO6 nanocomposites have the highest photocatalytic performance of 78.84 % within 100 min under visible light irradiation, higher than the photocatalytic performance of pure Bi2MoO6. A photocatalytic mechanism
of Ag2C2O4/Bi2MoO6 nanocomposites was also discussed according to the experimental results.

Keywords

Main Subjects


[2] Long G., Ding J., Xie L., Sun R., Chen M., Zhou Y., Huang X., Han G., Li Y., Zhao W., Fabrication of Mediator-Free g-C3N4/Bi2WO6 Z-Scheme with Enhanced Photocatalytic Reduction Dechlorination Performance of 2,4-DCP, Appl. Surf. Sci., 455: 1010–1018 (2018).
[3] Zhang S., Pu W., Du H., Wang Y., Yang C., Gong J., Facile Synthesis of Pt Assisted Bi-Bi2WO6−x with Oxygen Vacancies for the Improved Photocatalytic Activity under Visible Light, Appl. Surf. Sci., 459: 363–375 (2018).
[4] Shenawi-Khalil S., Uvarov V., Menes E., Popov I., Sasson Y., New Efficient Visible Light Photocatalyst Based on Heterojunction of BiOCl–Bismuth Oxyhydrate, Appl. Catal. A, 413–414: 1–9 (2012).
[5] Guo J., Shi L., Zhao J., Wang Y., Tang K., Zhang W., Xie C., Yuan X., Enhanced Visible-Light Photocatalytic Activity of Bi2MoO6 Nanoplates with Heterogeneous Bi2MoO6[email protected]2MoO6 Core-Shell Structure, Appl. Catal. B, 224: 692–704 (2018).
[6] Xiao X., Zheng C., Lu M., Zhang L., Liu F., Zuo X., Nan J., Deficient Bi24O31Br10 as a Highly Efficient Photocatalyst for Selective Oxidation of Benzyl Alcohol into Benzaldehyde under Blue LED Irradiation, Appl. Catal. B, 228: 142–151 (2018).
[7] Liu Y., Kong J., Yuan J., Zhao W., Zhu X., Sun C., Xie J., Enhanced Photocatalytic Activity over Flower-Like Sphere Ag/Ag2CO3/BiVO4 Plasmonic Heterojunction Photocatalyst for Tetracycline Degradation, Chem. Eng. J., 331: 242–254 (2018).
[8] Shi Y., Hu Y., Zhang L., Yang Z., Zhang Q., Cui H., Zhu X., Wang J., Chen J., Wang K., Palygorskite Supported BiVO4 Photocatalyst for Tetracycline Hydrochloride Removal, Appl. Clay Sci., 137: 249–258 (2017).
[9] Zhang B., Li J., Gao Y., Chong R., Wang Z., Guo L., Zhang X., Li C., To Boost Photocatalytic Activity
in Selective Oxidation of Alcohols on Ultrathin Bi2MoO6 Nanoplates with Pt Nanoparticles as Cocatalyst
, J. Catal., 345: 96–103 (2017).
[10] Wang Q., Sun K., Lu Q., Wei M., Yao L., Guo E., Synthesis of Novel Elm Branch-Like Hierarchical
γ-Bi2MoO6 Nanostructures with Enhanced Visible-Light-driven Photocatalytic Performance
, Dyes Pigments, 155: 194–201 (2018).
[11] Geng B., Wei B., Gao H., Xu L.,  Ag2O Nanoparticles Decorated Hierarchical Bi2MoO6 Microspheres for Efficient Visible Light Photocatalysts, J. Alloy. Compd., 699: 783–787 (2017).
[12] Bai J., Li Y., Liu J., Liu L., 3D Bi2MoO6 Hollow Mesoporous Nanostructures with High Photodegradation for Tetracycline, Microporous. Mesoporous. Mater., 240: 91–95 (2017).
[13] Li T., Hu X., Liu C., Tang C., Wang X., Luo S., Efficient Photocatalytic Degradation of Organic dyes and Reaction Mechanism with Ag2CO3/Bi2O2CO3 Photocatalyst under Visible Light Irradiation, J. Mole. Catal. A, 425: 124–135 (2016).
[14] Sun C., Xu Q., Xie Y., Ling Y., Jiao J., Zhu H., Zhao J., Liu X., Hu B., Zhou D., High-Efficient One-Pot synthesis of Carbon Quantum Dots Decorating Bi2MoO6 Nanosheets Heterostructure with Enhanced Visible-Light Photocatalytic Properties, J. Alloy. Compd., 723: 333–344 (2017).
[15] Meng X., Zhang Z., Pd-doped Bi2MoO6 Plasmonic Photocatalysts with Enhanced Visible Light Photocatalytic Performance, Appl. Surf. Sci., 392: 169–180 (2017).
[17] Li J., Fang W., Yu C., Zhou W., Zhu L., Xie Y., Ag-Based Semiconductor Photocatalysts in Environmental Purification, Appl. Surf. Sci., 358: 46–56 (2015).
[18] Feng C., Sun M., Wang Y., Huang X., Zhang A., Pang Y., Zhou Y., Peng L., Ding Y., Zhang L., Li D., Ag2C2O4 and Ag2C2O4/TiO2 Nanocompositesas Highly Efficient and Stable Photocatalyst under Visible Light: Preparation, Characterization and Photocatalytic Mechanism, Appl. Catal. B, 219: 705–714 (2017).
[19] Xiang Z., Zhong J., Huang S., Li J., Chen J., Wang T., Li M., Wang P., Efficient Charge Separation of Ag2CO3/ZnO Composites Prepared by a Facile Precipitation Approach and its Dependence on Loading Content of Ag2CO3, Mater. Sci. Semicond. Process., 52: 62–67 (2016).
[20] Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073-3273, U.S.A., (2001).
[21] Wang P., Li Y., Liu Z., Chen J., Wu Y., Guo M., Na P., In-Situ Deposition of Ag3PO4 on TiO2 Nanosheets Dominated by (001) Facets for Enhanced Photocatalytic Activities and Recyclability, Ceram. Inter., 43: 11588–11595 (2017).
[24] Ge S., Wang B., Li D., Fa W., Yang Z., Yang Z., Jia G., Zheng Z., Surface Controlled Photocatalytic Degradation of RhB over Flower-Like Rutile TiO2 Superstructures, Appl. Surf. Sci., 295: 123–129 (2014).
[25] Intaphong P., Phuruangrat A., Thongtem S., Thongtem T., Sonochemical Synthesis and Characterization of BiOI Nanoplates for Using as Visible-Light-Driven Photocatalyst, Mater. Lett., 213: 88–91 (2018).
[26] Phuruangrat A., Thongtem S., Thongtem T., Microwave-Assisted Hydrothermal Synthesis and Characterization of CeO2 Nanowires for Using as a Photocatalytic Material, Mater. Lett., 196: 61–63 (2017).
[27] Liu L., Luo X., Li Y., Xu F., Gao Z., Zhang X., Song Y., Xu H., Li H., Facile Synthesis of Few-Layer g-C3N4/ZnO Composite photocatalyst for Enhancing Visible Light Photocatalytic Performance of Pollutants Removal, Colloid. Surf. A, 537: 516–523 (2018).
[29] Wu K., Cui Y., Wei X., Song X., Huang J., The hybridization of Ag2CO3 Rods with g-C3N4 sheets with Improved Photocatalytic Activity, J. Saudi Chem. Soc., 19: 465–470 (2015).
[30] Kaur J., Gupta K., Kumar V., Bansal S., Singh S., Synergic Effect of Ag Decoration onto ZnO Nanoparticles for the Remediationof Synthetic Dye Wastewater, Ceram. Inter., 42: 2378–2385 (2016).