Enhanced Visible-Light-Driven Photodegradation of Rhodamine B over Ag₂C₂O₄/Bi₂MoO₆ Nanocomposites

Phuruanqrat, Anukorn*+; Junsang, Chanisara

Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, THAILAND

Patiphatpanya, Panudda; Dumrongrojthanath, Phattranit

Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, THAILAND

Ekthammathat, Nuengruethai

Program in Chemistry, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok 10600, THAILAND

Karthik, Astro

School of Physics, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, INDIA

Thongtem, Somchai•

Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, THAILAND

Thongtem, Titipun**

Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, THAILAND

ABSTRACT: In the present work, $Ag_2C_2O_4/Bi_2MoO_6$ nanocomposites containing different weight contents of $Ag_2C_2O_4$ were prepared by a deposition-precipitation method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). They revealed the presence of good crystalline monoclinic $Ag_2C_2O_4$ nanoparticles distributed on orthorhombic Bi_2MoO_6 square nanoplates. The photocatalytic properties of Bi_2MoO_6 and $Ag_2C_2O_4/Bi_2MoO_6$ samples were investigated by photodegradation of rhodamine B (RhB) under visible light irradiation. In this research, 10 wt% $Ag_2C_2O_4/Bi_2MoO_6$ nanocomposites have the highest photocatalytic performance of 78.84 % within 100 min under visible light irradiation, higher than the photocatalytic performance of pure Bi_2MoO_6 . A photocatalytic mechanism of $Ag_2C_2O_4/Bi_2MoO_6$ nanocomposites was also discussed according to the experimental results.

KEYWORDS: Heterostructure nanocomposites; Photocatalysis; Spectroscopy; Electron microscopy

* To whom correspondence should be addressed.

1021-9986/2020/4/29-37 9/\$/5.09

Research Article

⁺ E-mail: phuruangrat@hotmail.com ; ttpthongtem@yahoo.com

[•] Other Address: Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, THAILAND

INTRODUCTION

Over a period of ten years, advanced oxidation process (AOP) has been actively developed because environmental treatment for human health deals with heavy discharge of wastewater and organic dyes of industries in order to attain completely degradable, clean and renewable features [1–3]. TiO₂ has been proved to be the most effective photocatalyst used for decomposition of numerous compounds. A relatively wide band gap of ~3.2 eV for anatase or 3.0 eV for rutile prohibits the photocatalytic reaction because only ultraviolet fraction in solar light (< 3–5%) is absorbed [4, 5]. Thus the development of visible light induced photocatalyst is of great importance for efficient utilization of solar energy for photocatalytic degradation of organic pollutants and splitting of water.

Recently, bismuth-based materials such as BiOX (X = Cl, Br, I) [4, 6], BiVO₄ [7, 8], Bi₂WO₆ [1–3] and Bi₂MoO₆ [5, 9, 10–12] show promising application for photocatalysis of organic pollutant induced by visible radiation due to their unique crystalline structure, energy band structure, chemical stability, nontoxicity and relatively high photocatalytic activity for removal of organic pollutants [6, 7, 13]. Among oxide-based semiconductors, a naturally abundant, high quantum yield and non-toxic Bi₂MoO₆ material has promising candidate dielectric, ion-conductive, luminescent and catalytic properties [5, 9]. Furthermore, Bi₂MoO₆ has a unique layered structure constructed by alternate stacking of corner-shared and distorted MoO₆ octahedron and bismuth oxide [Bi₂O₂]²⁺ layers [9, 11, 12]. It is an excellent photocatalyst for degradation of organic compounds under visible-light irradiation such as methylene blue [5, 14], rhodamine B [10, 14], methyl orange [11], tetracycline [12] and phenol [15, 16]. Moreover, the photocatalytic performance of Bi₂MoO₆ is limited by rapid recombination of electron-hole pairs [9, 11, 14, 15]. To succeed in dealing with this problem, further study is in urgent need to improve its photocatalytic properties.

Construction of heterojunction photocatalyst is generally known to be an effective method to promote the separation of photoexcited electron-hole pairs and to enhance the photocatalytic performance [1, 2, 7]. Ag-based photocatalyst mixed with other semiconductor photocatalyst was used to improve photocatalytic activity owing to the narrow band gap energy and strong visible light absorption [17, 18]. Feng at al. reported that $Ag_2C_2O_4/TiO_2$ nanocomposites showed much higher photocatalytic activity for degradation of propylene and acetaldehyde gas under visible light irradiation than pure $Ag_2C_2O_4$ and P25-TiO_2 [18]. *Xiang et al.* claimed that Ag_2CO_3 deposited on the surface of ZnO by precipitation method can lead to improve the separation of photo-induced charge carrier of ZnO and show excellent photocatalytic reaction of RhB under visible light irradiation [19].

In this present research, Ag₂C₂O₄/Bi₂MoO₆ heterostructure nanocomposites with different weight contents of Ag₂C₂O₄ were prepared by a depositionprecipitation method. The products were characterized by XRD, SEM TEM, HRTEM and SAED. Their photocatalytic performance was investigated by photodegradation of rhodamine B (RhB) under visible light irradiation. The photocatalytic mechanism of Ag₂C₂O₄/Bi₂MoO₆ was also discussed according to the experimental results.

EXPERIMENTAL SECTION

The Bi_2MoO_6 nanoplates were synthesized by a hydrothermal method. Bismuth nitrate hexahydrate (Bi(NO₃)₃·6H₂O, Loba Chemie Pvt. Ltd., India) and sodium molybdate dihydrate (Na2MoO4·2H2O, Loba Chemie Pvt. Ltd., India) were analytical grade and used without further purification. In a typical synthesis, 0.005 mole Na2MoO4·2H2O was dissolved in 100 ml reverse osmosis (RO) water with continuous stirring at room temperature for 30 min, and followed by 0.01 mole Bi(NO₃)₃·6H₂O adding. The final mixture was stirred for at least 30 min. Subsequently, 3 M NaOH was added to the mixture until achieving at the desired pH of 10. The solution mixture was transferred to a 200 ml Teflon-lined autoclave and heated to 180 °C for 20 h. The resulting suspension was left to naturally cool down to room temperature. Following the centrifugation, the obtained white precipitates were washed with absolute ethanol and distilled water several times and dried in an oven at 60 °C for 12 h.

To synthesize $Ag_2C_2O_4$ nanoparticles with different contents deposited on Bi_2MoO_6 nanoplates, different concentrations of 0–10 % AgNO₃ and Na₂CO₃ by weight and 1 g Bi₂MoO₆ sample were dissolved in 100 ml RO water under magnetic stirring for 24 h. Then the products were separated by filtering, washed by absolute ethanol and dried at 80 $^{\circ}$ C in an electric oven for 24 h.

XRD patterns of the products were recorded on a Philips X'Pert MPD X-ray diffractometer equipped with Cu K_{α} radiation ranging from 10° to 80° at a scanning rate of 0.02 deg/s. SEM and TEM images were taken by a scanning electron microscope, JEOL JSM 6335F with an acceleration voltage of 20 kV and a transmission electron microscope, JEOL JEM 2010 with an acceleration voltage of 200 kV.

The photocatalytic activities of as-synthesized samples were evaluated via photodegradation of RhB solution under visible light irradiation of Xe lamp as a light source. A 200 mg photocatalyst was suspended in a 200 ml 10^{-5} M RhB solution each. The suspension was stirred in the dark for 30 min to establish an adsorption-desorption equilibrium of RhB and photocatalyst. Then the solutions were irradiated by visible light of Xe lamp at room temperature for different lengths of time. The RhB concentration was measured by a UV-visible spectrophotometer (Lambda 25 spectrometer, Perkin Elmer) at λ_{max} of RhB = 554 nm. The decolorization efficiency was calculated by the following equation.

Decolorization efficiency (%) =
$$\frac{C_o - C_t}{C_o} x \ 100$$
 (1)

where C_o is the initial concentration of RhB and C_t is the concentration of RhB after light irradiation for a period of time (t).

RESULTS AND DISCUSSION

Fig. 1 shows XRD patterns the 0-10 wt% Ag₂C₂O₄/Bi₂MoO₆ heterostructure over 2 θ of 10°-80° which revealed the phase of Bi₂MoO₆ sample and Ag₂C₂O₄/Bi₂MoO₆ heterostructure composites. It can be seen that the pure Bi₂MoO₆ sample shows prominent diffraction peaks which were indexed to pure orthorhombic Bi₂MoO₆ phase as compared with the JCPDS No. 21-0102 [20]. Impurities such as Bi₂O₃, MoO₃, etc were not detected, showing that the as-synthesized Bi₂MoO₆ phase is highly pure. Upon adding different weight contents of Ag₂C₂O₄, the additional characteristic monoclinic Ag₂C₂O₄ phase (JCPDS No. 04-0660 [20]) were detected in Ag₂C₂O₄/Bi₂MoO₆ heterostructure composites. Comparing to Bi₂MoO₆, XRD peaks of Ag₂C₂O₄/Bi₂MoO₆ heterostructure were

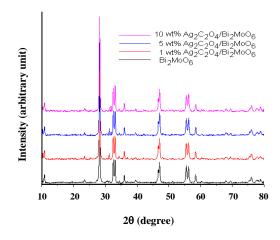


Fig. 1: XRD patterns of 0-10 wt% Ag₂C₂O₄/Bi₂MoO₆ samples.

still in the same position as those of Bi₂MoO₆, suggesting that the loaded Ag₂C₂O₄ did not change the bulk intrinsic property of the Bi₂MoO₆ sample. Therefore, the XRD results certified the formation of high purified monoclinic Ag₂C₂O₄ nanoparticles supported on the orthorhombic Bi₂MoO₆ surface by forming Ag₂C₂O₄/Bi₂MoO₆ heterostructure composites.

The morphologies of pure Bi₂MoO₆ sample and Ag₂C₂O₄/Bi₂MoO₆ composites were observed by SEM as the results shown in Fig. 2. SEM image of pure Bi₂MoO₆ appears as uniform square nanoplates with edge length of 500-800 nm and thickness of 20 nm and a relatively narrow grain size distribution. The surface of Bi₂MoO₆ nanoplates was very smooth. For the Ag₂C₂O₄/Bi₂MoO₆ heterostructure images, they were still nanoplates, indicating that the loaded Ag₂C₂O₄ did not alter the morphology of Bi₂MoO₆. Moreover, the good dispersive and uniform spherical Ag₂C₂O₄ nanoparticles with the diameter of < 100 nm supported on the surface of Bi2MoO6 nanoplates were detected on the Ag₂C₂O₄/Bi₂MoO₆ heterostructure nanocomposites, implying that $Ag_2C_2O_4$ nanoparticles were successfully deposited on the surface of Bi2MoO6 nanoplates. The uniform size of the Ag₂C₂O₄ nanoparticles deposited on the Bi₂MoO₆ surface was detected. Due to the limited number of reaction sites on Bi2MoO6, the growth and the aggregation of Ag₂C₂O₄ nanoparticles were prohibited and the pre-adsorption of Ag⁺ played the role in prohibiting the growth of Ag₂C₂O₄ nanoparticles [21]. Moreover, the EDS analysis indicated that the 10 wt% Ag₂C₂O₄/Bi₂MoO₆ nanocomposites were composed of Ag, C, Bi, Mo and O elements, certifying

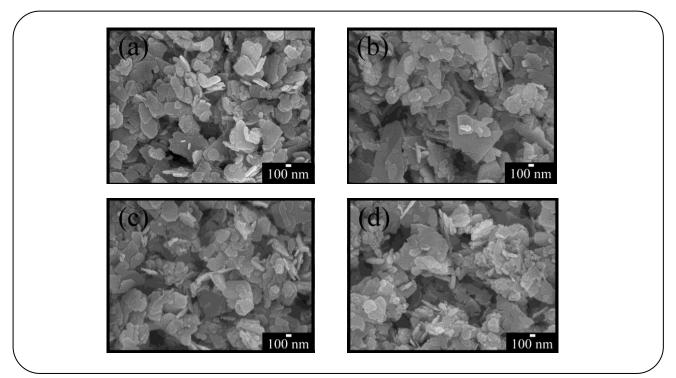


Fig. 2: SEM images of (a) pure Bi₂WO₆, (b) 1 wt% Ag₂C₂O₄/Bi₂MoO₆, (c) 5 wt% Ag₂C₂O₄/Bi₂MoO₆ and (d) 10 wt% Ag₂C₂O₄/Bi₂MoO₆ samples.

that the as-obtained nanocomposites were the $Ag_2C_2O_4$ and Bi_2MoO_6 combination.

Fig. 3 shows the TEM, SAED and HRTEM results of Bi2MoO₆, 5 wt% Ag2C2O4/Bi2MoO₆ and 10 wt% Ag₂C₂O₄/Bi₂MoO₆. The TEM image of Bi₂MoO₆ sample shows nanoplates with edge length of 50-200 nm. Its SAED pattern shows well-defined bright spots of electron diffraction revealing good single crystalline Bi2MoO6 phase. The SAED pattern was indexed to the (060), (062) and (002) planes of orthorhombic Bi2MoO6 phase with zone axis of [100]. This shows that the (100) surface is preferential orientation of orthorhombic Bi2MoO6 structure. TEM images of 5 wt% and 10 wt% Ag₂C₂O₄/Bi₂MoO₆ nanocomposites showed uniformly distributed nanoparticles the on surface of Bi_2MoO_6 nanoplates. The average particles are 5–20 nm in size. With the increment increase of Ag₂C₂O₄ content to 10 wt%, more Ag₂C₂O₄ nanoparticles were fully deposited and randomly dispersed on the surface of Bi₂MoO₆. TEM image of typical 10 wt% Ag₂C₂O₄/Bi₂MoO₆ nanocomposites at high magnification shows truly spherical Ag₂C₂O₄ nanoparticles with less than 10 nm. The HRTEM image of typical 10 wt%

 $Ag_2C_2O_4/Bi_2MoO_6$ nanocomposites clearly shows interface of junction between $Ag_2C_2O_4$ and Bi_2MoO_6 attributed to the separation of photo-excited charge carriers [7, 13]. A lattice space of 0.285 nm corresponds with the (110) crystalline plane of $Ag_2C_2O_4$ phase.

The photocatalytic activity of the pure Bi₂MoO₆ and Ag₂C₂O₄/Bi₂MoO₆ samples was monitored through photodegradation of RhB under visible light irradiation $(\lambda \ge 420 \text{ nm})$. Fig. 4 shows UV-visible spectra of temporal evolution for photodegradation of RhB under visible light irradiation within 100 min by Bi₂MoO₆ and 10 wt% Ag₂C₂O₄/Bi₂MoO₆ photocatalysts. They can be seen that the absorption intensity of RhB spectra decreases with the increase of exposure time of visible light irradiation. The RhB solution photodegraded by Bi₂MoO₆ remains as pink color while that photodegraded by Ag₂C₂O₄/Bi₂MoO₆ was transformed into almost white under visible-light 100 irradiation within min. The 10 wt% Ag₂C₂O₄/Bi₂MoO₆ nanocomposites showed higher photocatalytic activity for decolorization of RhB aqueous solution than Bi₂MoO₆. At the end of 100 min visible light irradiation, the maximum absorption peak of RhB at 554 nm was shifted to a shorter wavelength of 498 nm,

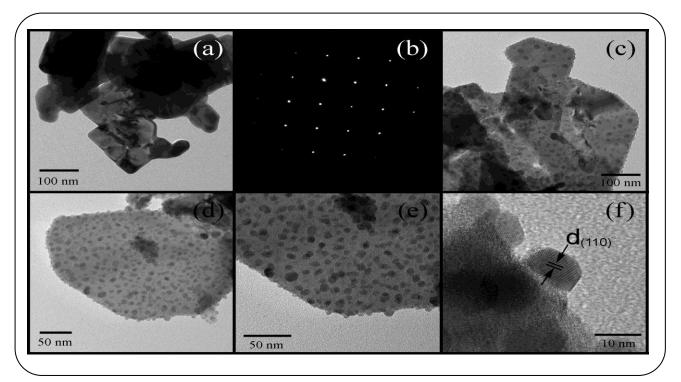


Fig. 3: TEM images, HRTEM images and SAED pattern of (a and b) pure Bi₂MoO₆, (c) 5 wt% Ag₂C₂O₄/Bi₂MoO₆ and (d-f) 10 wt% Ag₂C₂O₄/Bi₂MoO₆ samples.

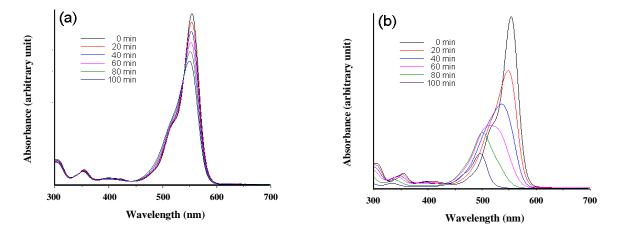


Fig. 4: UV-visible absorption of RhB after being photocatalyzed by (a) Bi₂MoO₆ sample and (b) 10 wt% Ag₂C₂O₄/Bi₂MoO₆ nanocomposites under visible light within 100 min.

attributed to the de-ethylation of RhB by active species during photocatalytic reaction [22–24].

Fig. 5a shows the relative concentration of RhB remaining in the solution as a function of irradiation time during the photocatalytic process by Bi_2MoO_6 and $Ag_2C_2O_4/Bi_2MoO_6$ samples under visible light irradiation. It can be seen that no obvious degradation of RhB was detected without photocatalyst. At the adsorption–

desorption equilibrium between photocatalyst and RhB, the RhB molecules were adsorbed around 18-21 % for Bi₂MoO₆ and Ag₂C₂O₄/Bi₂MoO₆ samples. The pure Bi₂MoO₆ sample exhibited poor photodecolorization efficiency of 24.53 % after 100 min of visible light irradiation. But for all Ag₂C₂O₄/Bi₂MoO₆ heterostructure composites with different loaded Ag₂C₂O₄ contents showed higher photocatalytic activity than the pure

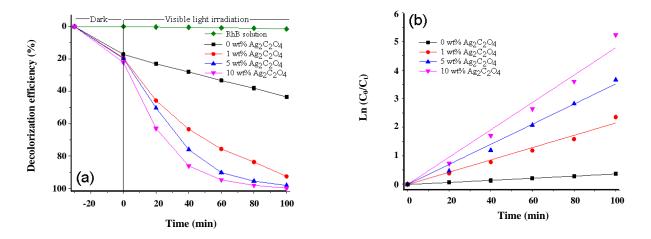


Fig. 5: (a) Decolorization efficiency and (b) first-order plot for photocatalytic degradation of RhB by 0–10 wt% Ag₂C₂O₄/Bi₂MoO₆ photocatalysts under visible light within 100 min.

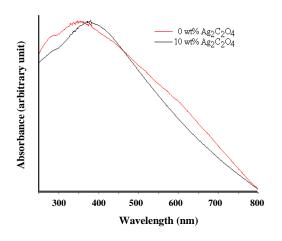


Fig. 6: UV-visible absorption of Bi₂MoO₆ and 10 wt% Ag₂C₂O₄/Bi₂MoO₆ samples.

Bi₂MoO₆ sample. These results were ascribed to the lowest rate of photoinduced electron-hole recombination and the good absorption in visible light as the results shown in Fig. 6. Fig. 6 shows the UV-visible absorption spectra of Bi₂MoO₆ and 10 wt% Ag₂C₂O₄/Bi₂MoO₆ samples in wavelength of 200–800 nm. Good UV-visible absorption was observed because the electronic transition from valence band to conduction band. Moreover, 10 wt% Ag₂C₂O₄/Bi₂MoO₆ showed higher UV-visible absorption than pure Bi₂MoO₆, indicating that more photoinduced electron-hole pairs were produced and were able to accelerate the photocatalytic activity for RhB degradation by 10 wt% Ag₂C₂O₄/Bi₂MoO₆ photocatalyst. The photodegradation efficiencies of RhB in the presence of different photocatalysts under visible light within According to the previous reports, the degradation of dyes can be ascribed to a pseudo-first-order reaction based on the Langmuir–Hinshelwood model for fitting empirical data through the following equation C_{0}

photocatalytic activity than other photocatalysts.

$$\ln \frac{C_0}{C_t} = kt$$
 (2)

100 min were 70.93, 76.74 and 78.84 % for 1 wt%

 $Ag_2C_2O_4/Bi_2MoO_6$, 5 wt% $Ag_2C_2O_4/Bi_2MoO_6$ and

10 wt% $Ag_2C_2O_4/Bi_2MoO_6$, respectively. The 10 wt% $Ag_2C_2O_4/Bi_2MoO_6$ nanocomposites exhibited higher

where k is the apparent pseudo-first-order rate constant (min⁻¹), C_o is the initial RhB concentration and Ct is the RhB concentration in an aqueous solution within a period of irradiation time [25, 26]. Fig. 5b shows the photocatalytic degradation of RhB as a function of irradiation time (t). The plot of $\ln C_0/C_t$ vs t shows a linear relationship which certified that the photodegradation of RhB followed the first-order kinetics. The 10 wt% Ag₂C₂O₄/Bi₂MoO₆ nanocomposites have the highest rate constant (0.0477 min⁻¹) which is 12 times of that of Bi_2MoO_6 (0.0040 min⁻¹). The results indicated that the deposition of Ag₂C₂O₄ nanoparticles on the surface of Bi₂MoO₆ nanoplates was favorable for the diffusion of photoinduced electrons and holes, resulting in improving photocatalytic activity of Ag₂C₂O₄/Bi₂MoO₆ nanocomposites [27].

The photocatalytic activity of $Ag_2C_2O_4/Bi_2MoO_6$ nanocomposites was higher than that of Bi_2MoO_6 . Possibly, there might have synergic effect between Ag₂C₂O₄ and Bi₂MoO₆. This effect was attributed to efficient charge diffusion across the composites. It was able to prohibit photoexcited electron-hole recombination and to enhance photocatalytic performance [28-30]. An appropriate band potential is a parameter to determine the synergic effect. Both Bi₂MoO₆ and Ag₂C₂O₄ could absorb visible light and were all excited to generate electronhole pairs at conduction and valance bands. Subsequently, photoinduced electrons and holes diffused across the Ag₂C₂O₄-Bi₂MoO₆ interface resulting to prevent the recombination process and improve the photodegradation reaction. Then, the photoinduced electrons and holes can react with surface-adsorbed O_2 and OH^- on the $Ag_2C_2O_4$ active sites to generate $O_2^$ and 'OH radicals which further oxidized RhB molecules to form CO₂ and water. Thus it is reasonable to claim that the Ag₂C₂O₄/Bi₂MoO₆ nanocomposites exhibit higher photocatalytic activity than pure Bi₂MoO₆.

CONCLUSIONS

Heterostructure $Ag_2C_2O_4/Bi_2MoO_6$ nanocomposites were successfully synthesized by a depositionprecipitation method. The analytical results show good distribution of $Ag_2C_2O_4$ nanoparticles supported on Bi_2MoO_6 nanoplates. The 10 wt% $Ag_2C_2O_4/Bi_2MoO_6$ nanocomposites showed the highest photocatalytic activity for degradation of RhB under visible light irradiation.

Acknowledgments

We are extremely grateful to Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand for providing financial support through the contact no. SCI610022S, and Center of Excellence in Materials Science and Technology, Chiang Mai University under the administration of Materials Science Research Center, Faculty of Science, Chiang Mai University, Thailand.

Received : Dec. 16, 2018 ; Accepted : Apr. 15, 2019

REFERENCES

 Wang G., Wang L., Hydrothermal Synthesis of Rose-Like AgVO₃/Bi₂WO₆ Heterojunctions with Enhanced Visible-Light-Driven Photocatalytic Activity, *Physica E*, **103**: 323–328 (2018).

- [3] Zhang S., Pu W., Du H., Wang Y., Yang C., Gong J., Facile Synthesis of Pt Assisted Bi-Bi₂WO_{6-x} with Oxygen Vacancies for the Improved Photocatalytic Activity under Visible Light, *Appl. Surf. Sci.*, **459**: 363–375 (2018).
- [4] Shenawi-Khalil S., Uvarov V., Menes E., Popov I., Sasson Y., New Efficient Visible Light Photocatalyst Based on Heterojunction of BiOCl– Bismuth Oxyhydrate, *Appl. Catal. A*, **413–414**: 1–9 (2012).
- [5] Guo J., Shi L., Zhao J., Wang Y., Tang K., Zhang W., Xie C., Yuan X., Enhanced Visible-Light Photocatalytic Activity of Bi₂MoO₆ Nanoplates with Heterogeneous Bi₂MoO₆-x@Bi₂MoO₆ Core-Shell Structure, *Appl. Catal. B*, **224**: 692–704 (2018).
- [6] Xiao X., Zheng C., Lu M., Zhang L., Liu F., Zuo X., Nan J., Deficient Bi₂₄O₃₁Br₁₀ as a Highly Efficient Photocatalyst for Selective Oxidation of Benzyl Alcohol into Benzaldehyde under Blue LED Irradiation, *Appl. Catal. B*, **228**: 142–151 (2018).
- [7] Liu Y., Kong J., Yuan J., Zhao W., Zhu X., Sun C., Xie J., Enhanced Photocatalytic Activity over Flower-Like Sphere Ag/Ag₂CO₃/BiVO₄ Plasmonic Heterojunction Photocatalyst for Tetracycline Degradation, *Chem. Eng. J.*, **331**: 242–254 (2018).
- [8] Shi Y., Hu Y., Zhang L., Yang Z., Zhang Q., Cui H., Zhu X., Wang J., Chen J., Wang K., Palygorskite Supported BiVO₄ Photocatalyst for Tetracycline Hydrochloride Removal, *Appl. Clay Sci.*, **137**: 249– 258 (2017).
- [9] Zhang B., Li J., Gao Y., Chong R., Wang Z., Guo L., Zhang X., Li C., To Boost Photocatalytic Activity in Selective Oxidation of Alcohols on Ultrathin Bi₂MoO₆ Nanoplates with Pt Nanoparticles as Cocatalyst, J. Catal., **345**: 96–103 (2017).
- [10] Wang Q., Sun K., Lu Q., Wei M., Yao L., Guo E., Synthesis of Novel Elm Branch-Like Hierarchical γ-Bi₂MoO₆ Nanostructures with Enhanced Visible-Light-driven Photocatalytic Performance, *Dyes Pigments*, **155**: 194–201 (2018).

- [11] Geng B., Wei B., Gao H., Xu L., Ag₂O Nanoparticles Decorated Hierarchical Bi₂MoO₆ Microspheres for Efficient Visible Light Photocatalysts, *J. Alloy. Compd.*, **699**: 783–787 (2017).
- Bai J., Li Y., Liu J., Liu L., 3D Bi₂MoO₆ Hollow Mesoporous Nanostructures with High Photodegradation for Tetracycline, *Microporous. Mesoporous. Mater.*, 240: 91–95 (2017).
- [13] Li T., Hu X., Liu C., Tang C., Wang X., Luo S., Efficient Photocatalytic Degradation of Organic dyes and Reaction Mechanism with Ag₂CO₃/Bi₂O₂CO₃ Photocatalyst under Visible Light Irradiation, *J. Mole. Catal. A*, **425**: 124–135 (2016).
- [14] Sun C., Xu Q., Xie Y., Ling Y., Jiao J., Zhu H., Zhao J., Liu X., Hu B., Zhou D., High-Efficient One-Pot Synthesis of Carbon Quantum Dots Decorating Bi2MoO6 Nanosheets Heterostructure with Enhanced Visible-Light Photocatalytic Properties, J. Alloy. Compd., **723**: 333–344 (2017).
- [15] Meng X., Zhang Z., Pd-doped Bi₂MoO₆ Plasmonic Photocatalysts with Enhanced Visible Light Photocatalytic Performance, *Appl. Surf. Sci.*, **392**: 169–180 (2017).
- [16] Yin W., Wang W., Sun S., Photocatalytic Degradation of Phenol over Cage-Like Bi₂MoO₆ Hollow Spheres under Visible-Light Irradiation, Catal. Commun., **11**: 647–650 (2010).
- [17] Li J., Fang W., Yu C., Zhou W., Zhu L., Xie Y., Ag-Based Semiconductor Photocatalysts in Environmental Purification, *Appl. Surf. Sci.*, **358**: 46–56 (2015).
- [18] Feng C., Sun M., Wang Y., Huang X., Zhang A., Pang Y., Zhou Y., Peng L., Ding Y., Zhang L., Li D., Ag₂C₂O₄ and Ag₂C₂O₄/TiO₂ Nanocompositesas Highly Efficient and Stable Photocatalyst under Visible Light: Preparation, Characterization and Photocatalytic Mechanism, *Appl. Catal. B*, **219**: 705–714 (2017).
- [19] Xiang Z., Zhong J., Huang S., Li J., Chen J., Wang T., Li M., Wang P., Efficient Charge Separation of Ag₂CO₃/ZnO Composites Prepared by a Facile Precipitation Approach and its Dependence on Loading Content of Ag₂CO₃, *Mater. Sci. Semicond. Process.*, **52**: 62–67 (2016).
- [20] Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073-3273, U.S.A., (2001).

- [21] Wang P., Li Y., Liu Z., Chen J., Wu Y., Guo M., Na P., In-Situ Deposition of Ag₃PO₄ on TiO₂ Nanosheets Dominated by (001) Facets for Enhanced Photocatalytic Activities and Recyclability, *Ceram. Inter.*, 43: 11588–11595 (2017).
- [22] Hu Y., Li D., Wang H., Zeng G., Li X., Shao Y., Role of Active Oxygen Species in the Liquid-Phase Photocatalytic Degradation of RhB Using BiVO₄/TiO₂ Heterostructure under Visible Light Irradiation, J. Mole. Catal. A, 408: 172–178 (2015).
- [23] Hu L., Deng G., Lu W., Pang S., Hu X., Deposition of CdS Nanoparticles on MIL-53(Fe) Metal-Organic Framework with Enhanced Photocatalytic Degradation of RhB under Visible Light Irradiation, Appl. Surf. Sci., 410: 401–413 (2017).
- [24] Ge S., Wang B., Li D., Fa W., Yang Z., Yang Z., Jia G.,
 Zheng Z., Surface Controlled Photocatalytic
 Degradation of RhB over Flower-Like Rutile TiO₂
 Superstructures, *Appl. Surf. Sci.*, **295**: 123–129 (2014).
- [25] Intaphong P., Phuruangrat A., Thongtem S., Thongtem T., Sonochemical Synthesis and Characterization of BiOI Nanoplates for Using as Visible-Light-Driven Photocatalyst, *Mater. Lett.*, 213: 88–91 (2018).
- [26] Phuruangrat A., Thongtem S., Thongtem T., Microwave-Assisted Hydrothermal Synthesis and Characterization of CeO₂ Nanowires for Using as a Photocatalytic Material, *Mater. Lett.*, **196**: 61–63 (2017).
- [27] Liu L., Luo X., Li Y., Xu F., Gao Z., Zhang X., Song Y., Xu H., Li H., Facile Synthesis of Few-Layer g-C₃N₄/ZnO Composite photocatalyst for Enhancing Visible Light Photocatalytic Performance of Pollutants Removal, *Colloid. Surf. A*, **537**: 516– 523 (2018).
- [28] Singh A., Sinha A.S.K., Active CdS/rGO photocatalyst by a High-Temperature Gas-Solid Reaction for Hydrogen Production by Splitting of Water, *Appl. Surf. Sci.*, **430**: 184–197 (2018).
- [29] Wu K., Cui Y., Wei X., Song X., Huang J., The hybridization of Ag₂CO₃ Rods with g-C₃N₄ sheets with Improved Photocatalytic Activity, *J. Saudi Chem. Soc.*, **19**: 465–470 (2015).

[30] Kaur J., Gupta K., Kumar V., Bansal S., Singh S., Synergic Effect of Ag Decoration onto ZnO Nanoparticles for the Remediation of Synthetic Dye Wastewater, *Ceram. Inter.*, **42**: 2378–2385 (2016).