DFT Study on the Possible Intramolecular Rearrangement of Four Monocyclic Monoterpenes

Document Type : Research Article


Key Laboratory of Crops with High Quality and Efficient Cultivation and Security Control, Yunnan Higher Education Institutions, Honghe University, Mengzi 661199, CHINA


As the basis and preliminary work of future experimental study on PAHs formation under high temperature, theoretical computations on the intramolecular rearrangement reactions of sylvestrene (1-methyl-3-vinylcyclohexene) and 1,4-dimethyl-4-vinylcyclohexene are conducted and reveal that they may be transformed to themselves. The conversion between Dipentene and 2,4-dimethyl-4-vinylcyclohexene is also predicted. All the reactions proceed along concerted paths through a single cis-endo transition state with relatively high energy barrier (~200 kJ/mol) and presumably occur when alkenes burn. These possible Cope rearrangement reactions have some characters of stepwise Diels-Alder cycloadditions during which diene and dienophile are replaced by each other and may suggest the complexity of cyclic hydrocarbons formation.


Main Subjects

[1] Stolle A., Ondruschka B., Hopf H., Thermal Rearrangements of Monoterpenes and Monoterpenoids, Helv. Chim. Acta., 92(9): 1673-1719 (2009).
[2] Grossman J. D., Ikeda R. M., Deszyck E. J., Bavley A., Mechanism of Solanesol Breakdown During Pyrolysis, Nature, 199:661-663 (1963).
[3] Severson R. F., Schlotzhauer W.S, Chortyk O. T., Arrendale R. F., Snook M.E., “Precursors of Polynuclear Aromatic Hydrocarbons in Tobacco Smoke”: 3rd International Symposium on Carcinogenesis and Mutagenesis, Edited by Jones PW and Leber P. Ann Arbor Science, Ann Arbor, MI: p.277-298 (1979).
[4] Citroni M., Ceppatelli M., Bini R., Schettino V., Dimerization and Polymerization of Isoprene at High Pressures, J. Phys. Chem. B., 111(15): 3910-3917 (2007).
[5] Wang C.M., Liu Z.H., Chen Y.K., Han J.M., Chen Y.L., Miao M.M., Cao H., An ab initio Analysis of the Diels–Alder Reaction Between Two Isoprenes, Comput. Theor. Chem. 1017:174-181 (2013).
[6] Lee C., Yang W., Parr R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev. B, 37(2): 785-789 (1988).
[7] Petersson G. A., Bennett A., Tensfeldt T. G., Laham M., Shirley W. A., Mantzaris J., A Complete Basis
Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements, J. Chem. Phys., 89(4): 2193-2218 (1988).
[8] Becke A. D., A New Mixing of Hartree-Fock and Local Density-Functional Theories, J. Chem. Phys., 98(2): 1372-1377 (1993).
[9] Fukui K., Formulation of the Reaction Coordinate, J. Phys. Chem., 74(23): 4161-4163 (1970).
[10] Frisch M. J., Trucks G. W., Schlegel H. B., et al. Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT. (2009).
[11] Black K. A., Wilsey S., Houk K. N., Dissociative and Associative Mechanisms of Cope Rearrangements of Fluorinated 1,5-Hexadienes and 2,2'-bis-Methylenecyclopentanes, J. Am. Chem. Soc., 125(22): 6715-6724 (2003).
[12] Bachrach S. M., “Computational Organic Chemistry”, John Wiley & Sons, Inc.: Hoboken, N.J., (2006).
[13] Karimi S., Grohamann K., Todaro L., Bromination and Dehydrobromination Studies on Some CIS-4a-Methyl-Decaline-2,7-Diones, Iran. J. Chem. Chem. Eng. (IJCCE), 13(1): 13-24 (1994).