Synthesis of KBiO3/Nano-Ag3PO4 Composite Photocatalyst and Its Application for Degradation of Organic Pollutants under Visible Light

Document Type : Research Article


1 School of Environmental Ecology, Jiangsu City Vocational College, Nanjing, 210036, P.R. CHINA

2 School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang, 212003, P.R. CHINA

3 Nanjing University and Yancheng Academy of Environmental Technology and Engineering, Yancheng 224000, P.R. CHINA


In this work, a novel composite photocatalyst, KBiO3/nano-Ag3PO4 (K/Ag catalyst), was synthesized, and efficiently degraded methylene blue (MB) under visible light. The various properties of photocatalysts were measured by modern analytical techniques, such as XRD, FT-IR, SEM, XPS, and UV-Vis. We also utilized Density functional theory calculation (DFT) to investigate the photocatalytic degradation mechanism in this reaction process. The multiple characterization findings demonstrated that K/Ag composite catalyst was successfully synthesized using Ag3PO4 and KBiO3, and it displayed excellent absorption of visible light. The photocatalytic results confirmed that K/Ag catalyst greatly promoted the degradation of MB under visible light. The first-order reaction kinetics model could satisfactorily describe the apparent photocatalytic degradation process in this system. In addition, adding electron capture agents to the photocatalytic system highly decreased the degradation efficiencies of the target pollutant. Moreover, K/Ag composite catalyst exhibited perfect photocatalyst stability after recycling three times. By calculating the band structure, Density of States (DOS), and work function, KBiO3 and Ag3PO4 could be considered as n-type and p-type semiconductor materials, respectively. When the composite catalyst was exposed to light, the light-excited electrons would have appeared in both the conduction bands. Furthermore, the transfer trend of electrons and holes made photogenerated electrons concentrate on the conduction band of n-type KBiO3, and photogenerated holes concentrate on the valence band of p-type Ag3PO4, thereby greatly improving the photocatalytic efficiency.


Main Subjects

[1] Chen K.-H., Wang H.-C., Han J.-L., Liu W.-Z., Cheng H.-Y., Liang B., Wang A.-J., The Application of Footprints for Assessing the Sustainability of Wastewater Treatment Plants: A Review, J. Clean. Prod., 277: 124053 (2020).
[5] Ma J., Xia W., Zhang R., Ding L., Kong Y., Zhang H., Fu K., Flocculation of Emulsified Oily Wastewater by Using Functional Grafting Modified Chitosan: The Effect of Cationic and Hydrophobic Structure, J. Hazard Mater, 403: 123690-123690 (2021).
[6] Kovacic A., Gys C., Gulin. M.R., Gornik T., Kosjek T., Heath D., Covaci A., Heath E., Kinetics and Biotransformation Products of Bisphenol F and S During Aerobic Degradation with Activated Sludge, J. Hazard. Mater., 404(Pt A): 124079-124079 (2021).
[7] Cheng T., Chen C., Tang R., Han C.-H., Tian Y., Competitive Adsorption of Cu, Ni, Pb, and Cd
from Aqueous Solution onto Fly Ash-Based Linde F(K) Zeolite
, Iran. J. Chem. Chem. Eng.(IJCCE), 37(1): 61-72 (2018).
[8] Chen C., Cheng T., Wang Z.L., Han C.H., Removal of Zn2+ in Aqueous Solution by Linde F (K) Zeolite Prepared from Recycled Fly Ash, J. Indian. Chem. Soc., 91(2): 285-291 (2014).
[9] Chen C., Cheng T., Shi Y., Tian Y., Adsorption of Cu(II) from Aqueous Solution on Fly Ash Based Linde F(K) Zeolite, Iran. J. Chem. Chem. Eng. (IJCE), 33(3): 29-35 (2014).
[11] Li T., Ren Y., Wu D., Zhang W., Shi M., Ji C., Lv L., Hua M., Zhang W., A Novel Water-Stable Two-Dimensional Zeolitic Imidazolate Frameworks Thin-Film Composite Membrane for Enhancements in Water Permeability and Nanofiltration Performance, Chemosphere, 261: 127717 (2020).
[12] Zuo S., Jin X., Wang X., Lu Y., Zhu Q., Wang J., Liu W., Du Y., Wang J., Sandwich Structure Stabilized Atomic Fe Catalyst for Highly Efficient Fenton-Like Reaction at All pH Values, Appl. Catal. B-Environ., 282: 119551 (2021).
[13] Lei D., Xue J., Peng X., Li S., Bi Q., Tang C., Zhang L., Oxalate Enhanced Synergistic Removal of Chromium(VI) and Arsenic(III) over ZnFe2O4/g-C3N4: Z-Scheme Charge Transfer Pathway and Photo-Fenton Like Reaction, Appl. Catal. B-Environ., 282: 119578 (2021).
[14] Zatloukalova K., Obalova L., Koci K., Capek L., Matej Z., Snajdhaufova H., Ryczkowski J., Slowik G., Photocatalytic Degradation of Endocrine Disruptor Compounds in Water over Immobilized TiO2 Photocatalysts, Iran. J. Chem. Chem. Eng. (IJCCE), 36(2): 29-38 (2017).
[16] Malekhosseini H., Mahanpoor K., Khosravi M., Motiee F., Kinetic Modeling and Photocatalytic Reactor Designed for Removal of Resorcinol in Water by Nano ZnFe2O4/Copper Slag as Catalyst: Using Full Factorial Design of Experiment, Iran. J. Chem. Chem. Eng. (IJCCE), 38(3): 257-266 (2019).
[17] Ji Q., Cheng X., Wu Y., Xiang W., He H., Xu Z., Xu C., Qi C., Li S., Zhang L., Yang S., Visible Light Absorption by Perylene Diimide for Synergistic Persulfate Activation Towards Efficient Photodegradation of Bisphenol A, Appl. Catal. B-Environ., 282: 119579 (2021).
[18] Muhammad B., Bibi A., Javed A., Irfana S., Adnan M., Shah S.H., Khan U.A., Effects of Solvent on the Structure and Properties of Titanium Dioxide Nanoparticles and Their Antibacterial Activity, Iran J. Chem. Chem. Eng. (IJCCE), 38(4): 261-272 (2019).
[19] Kachbouri S., Elaloui E., Moussaoui Y., The Effect of Surfactant Chain Length and Type on the Photocatalytic Activity of Mesoporous TiO2 Nanoparticles Obtained via Modified Sol-Gel Process, Iran. J. Chem. Chen. Eng. (IJCCE), 38(1): 17-26 (2019).
[20] Zeng P., Yu H., Chen M., Xiao W., Li Y., Liu H., Luo J., Peng J., Shao D., Zhou Z., Luo Z., Wang Y., Chang B., Wang X., Flower-like ZnO Modified with BiOI Nanoparticles as Adsorption/Catalytic Bifunctional Hosts for Lithium-Sulfur Batteries, J. Energy Chem., 51: 21-29 (2020).
[21] Ramu A.G., Yang D.J., Al Olayan E.M., AlAmri O.D., Aloufi A.S., Almushawwah J.O., Choi D., Synthesis of Hierarchically Structured T-ZnO-rGO-PEI Composite and their Catalytic Removal of Colour and Colourless Phenolic Compounds, Chemosphere, 267: 129245 (2020).
[22] Ekthammathat N., Thongtem S., Thongtem T., Phuruangrat A., Characterization and Antibacterial Activity of Nanostructured ZnO Thin Films Synthesized Through a Hydrothermal Method, Powder Technol, 254: 199-205 (2014).
[25] Wahba M.A., Yakout S.M., Mohamed W.A.A., Galal H.R., Remarkable Photocatalytic Activity of Zr Doped ZnO and ZrO2/ZnO Nanocomposites: Structural, Morphological and Photoluminescence Properties, Mater. Chem. Phys., 256: 123754 (2020).
[26] Castro Honorio L.M., Menezes de Oliveira A.L., da Silva Filho E.C., Osajima J.A., Hakki A., Macphee D.E., Garcia dos Santos I.M., Supporting the Photocatalysts on ZrO2: An Effective Way to Enhance the Photocatalytic Activity of SrSnO3, Appl. Surf. Sci., 528: 146991 (2020).
[27] Meng X., Yao L., Shi L., Zhang Y., Cui L., Fabrication of 0D/2D CdS/Bi12O17Cl2 Heterojunction Photocatalyst with Boosted Photocatalytic Performance, Mat. Sci. Semicon. Proc., 121: 105411 (2021).
[28] Wang K., Xing Z., Du M., Zhang S., Li Z., Pan K., Zhou W., Hollow MoSe2@Bi2S3/CdS Core-Shell Nanostructure as Dual Z-Scheme Heterojunctions with Enhanced Full Spectrum Photocatalytic-Photothermal Performance, Appl. Catal. B-Environ., 281: 119482 (2021).
[30] Zhang Q., Chen P., Chen L., Wu M., Dai X., Xing P., Lin H., Zhao L., He Y., Facile Fabrication of Novel Ag2S/K-g-C3N4 Composite and Its Enhanced Performance in Photocatalytic H-2 Evolution, J. Colloid. Interf. Sci., 568: 117-129 (2020).
[31] Li Y., Shen J., Quan W., Diao Y., Wu M., Zhang B., Wang Y., Yang D., 2D/2D p-n Heterojunctions of CaSb2O6/g-C(3)N(4)for Visible Light-Driven Photocatalytic Degradation of Tetracycline, Eur. J. Inorg. Chem., 2020(40): 3852-3858 (2020).
[32] He R., Xue K., Wang J., Yan Y., Peng Y., Yang T., Hu Y., Wang W., Nitrogen-Deficient g-C3Nx/POMs Porous Nanosheets with P-N Heterojunctions Capable of the Efficient Photocatalytic Degradation of Ciprofloxacin, Chemosphere, 259: 127465 (2020).
[33] Alhokbany N.S., Mousa R., Naushad M., Alshehri S.M., Ahamad T., Fabrication of Z-Scheme Photocatalysts g-C3N4/Ag3PO4/Chitosan for the Photocatalytic Degradation of Ciprofloxacin, Int. J. Biol. Macromol., 164: 3864-3872 (2020).
[34] Yin H., Cao Y., Fan T., Zhang M., Yao J., Li P., Chen S., Liu X., In Situ Synthesis of Ag3PO4/C3N5 Z-Scheme Heterojunctions with Enhanced Visible-Light-Responsive Photocatalytic Performance for Antibiotics Removal, Sci. Total. Environ., 754: 141926 (2021).
[35] Mohaghegh N., Rahimi E., Gholami M.R., Ag3PO4/BiPO4 p–n Heterojunction Nanocomposite Prepared in Room-Temperature Ionic Liquid Medium with Improved Photocatalytic Activity, Mat. Sci. Semicon. Proc., 39: 506-514 (2015).
[36] Zhang C., Wang L., Yuan F., Meng R., Chen J., Hou W., Zhu H., Construction of p-n Type Ag3PO4/CdWO4 Heterojunction Photocatalyst for Visible-Light-Induced Dye Degradation, Appl. Surf. Sci., 534: 147544 (2020).
[37] Wang X., Ma J., Kong Y., Fan C., Peng M., Komarneni S., Synthesis of p-n Heterojunction Ag3PO4/NaTaO3 Composite Photocatalyst for Enhanced Visible-Light-Driven Photocatalytic Performance, Mater Lett, 251: 192-195 (2019).
[38] Reunchan P., Umezawa N., Native Defects and Hydrogen Impurities in Ag3PO4, Phys. Rev. B, 87(24): 245205 (2013).
[39] Huang Y., Ma T., Chen Q.Y., Cao C., He Y., The Electronic Properties of Impurities (N, C, F, Cl, and S)
in Ag3PO4: A Hybrid Functional Method Study
, Sci. Rep., 5: 12750 (2015).
[40] Lv F.Z., Hu C.H., Wang D.H., Zhao W., Wei S., Zhong Y., Zhou H.Y., Doping Effect from Ag and Sb in KBiO3 Photocatalyst: First Principles Study, Mater. Res. Innov., 18(sup4): S4-1031-S4-1035 (2014).
[41] Zhang H., Zheng H., Wang Y., Yan R., Luo D., Jiang W., KBiO3 as an Effective Visible-Light-Driven Photocatalyst: Stability Improvement by In Situ Constructing KBiO3/BiOX (X = Cl, Br, I) Heterostructure, Ind. Eng. Chem. Res., 58(5): 1875-1887 (2019).
[42] Takei T., Haramoto R., Dong Q., Kumada N., Yonesaki Y., Kinomura N., Mano T., Nishimoto S., Kameshima Y., Miyake M., Photocatalytic Activities of Various Pentavalent Bismuthates under Visible Light Irradiation, J. Solid. State. Chem., 184(8): 2017-2022 (2011).
[43] Kresse G., Furthmuller J., Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, 54(16): 11169-11186 (1996).
[44] Hohenberg P., Kohn W., InhomogeIIeous Electron Gas, Phys Rev, 136(3B): 864-871 (1964).
[45] Kohn W., Sham L.J., Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140: A1133 (1965).
[46] Perdew J., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77: 3865-3868 (1996).
[47] Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pederson M.R., Singh D.J., Fiolhais C., Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Phys. Rev. B., 46: 6671-6687 (1992).
[48] Zhang X., Cheng T., Chen C., Wang L., Deng Q., Chen G., Ye C., Synthesis of a Novel Magnetic Nano-Zeolite and its Application as an Efficient Heavy Metal Adsorbent, Mater. Re.s Express., 7(8): 085007 (2020).
[49] Chen C., Li Q., Shen L., Zhai J., Feasibility of Manufacturing Geopolymer Bricks Using Circulating Fluidized Bed Combustion Bottom Ash, Environ. Technol., 33(10-12): 1313-1321 (2012).
[51] Akhtar J., Tahir M.B., Sagir M., Bamufleh H.S., Improved Photocatalytic Performance of Gd and Nd co-Doped ZnO Nanorods for the Degradation of Methylene Blue, Ceram. Int., 46(8): 11955-11961 (2020).
[52] Raja A., Rajasekaran P., Vishnu B., Selvakumar K., Yeon Do J., Swaminathan M., Kang M., Fabrication of Effective Visible-Light-Driven Ternary Z-Scheme ZnO-Ag-BiVO4 Heterostructured Photocatalyst for Hexavalent Chromium Reduction, Sep. Purif. Technol., 252: 117446 (2020).
[54] Ramachandran R.., Sathiya M., Ramesha K., Prakash A.S., Madras G., Shukla A.K., Photocatalytic Properties of KBiO3 and LiBiO3 with Tunnel Structures, J. Chem. Soc., 123(4): 517-524 (2011).
[55] C. Du., Song. J., Tan S.., Yang L., Yu G., Chen H., L. Zhou., Z. Zhang., Y. Zhang., Y. Su., X. Wen., S. Wang, Facile Synthesis of Z-Acheme ZnO/Ag/Ag3PO4 Composite Photocatalysts with Enhanced Performance for the Degradation of Ciprofloxacin, Mater. Chem. Phys., 260: 124136 (2021).
[57] Cheng T., Chen C., Wang L., Zhang X., Ye C., Deng Q., Chen G., Synthesis of Fly Ash Magnetic Glass Microsphere@BiVO4 and Its Hybrid Action of Visible-Light Photocatalysis and Adsorption Process, Pol J Environ Stud, 30(3): 2027 (2021).
[58] Zhai Y., Yin Y., Liu X., Li Y., Wang J., Liu C., Bian G., Novel Magnetically Separable BiVO4/Fe3O4 Photocatalyst: Synthesis and Photocatalytic Performance under Visible-light Irradiation, Mater Res Bull, 89: 297-306 (2017).
[60] El-Katori E.E., Ahmed M.A., El-Bindary A.A., Oraby A.M., Impact of CdS/SnO2 Heterostructured Nanoparticle as Visible Light Active Photocatalyst for the Removal Methylene Blue Dye, J. Photoch. Photobio. A, 392: 112403 (2020).
[62] Nithya M., Vidhya S., Keerthi, A Novel g-C3N4/MnV2O6 Heterojunction Photocatalyst for the Removal of Methylene Blue and Indigo Carmine, Chem Phys Lett, 737: 136832 (2019).
[63] Xie G., Wang H., Zhou Y., Du Y., Liang C., Long L., Lai K., Li W., Tan X., Jin Q., Qiu G., Zhou D., Huo H., Hu X., Xu X., Simultaneous Remediation of Methylene Blue and Cr(VI) by Mesoporous BiVO4 Photocatalyst under Visible-Light Illumination, J. Taiwan Inst. Chem. E, 112: 357-365 (2020).
[64] Yayapao O., Thongtem T., Phuruangrat A., Thongtem S., Synthesis and Characterization of Highly Efficient Gd Doped ZnO Photocatalyst Irradiated with Ultraviolet and Visible Radiations, Mat. Sci. Semicon. Proc., 39: 786-792 (2015).
[65] Abd-Elrahim A.G., Chun D.-M., Room-Temperature Deposition of ZnO-Graphene Nanocomposite Hybrid Photocatalysts for Improved Visible-Light-Driven Degradation of Methylene Blue, Ceram Int, 47(9): 12812-12825 (2021).
[66] Zhang Q., Yu L., Yang B., Xu C., Zhang W., Xu Q., Diao G., Magnetic Fe3O4@Ru-Doped TiO2 Nanocomposite as a Recyclable Photocatalyst for Advanced Photodegradation of Methylene Blue in Simulated Sunlight, Chem. Phys. Lett., 774: 138609 (2021).
[68] Karuppasamy P., Ramzan Nilofar Nisha N., Pugazhendhi A., Kandasamy S., Pitchaimuthu S., An Investigation of Transition Metal Doped TiO2 Photocatalysts for the Enhanced Photocatalytic Decoloration of Methylene Blue Dye under Visible Light Irradiation, J. Environ. Chem. Eng., 9(4): 105254 (2021).
[69] Paul A., Zangrando E., Bertolasi V., Manna S.C., Cu(II)-Na(I) Heterometallic Coordination Compounds as Photocatalyst for Degradation of Methylene Blue, Inorg. Chim. Acta., 522: 120346 (2021).