The Effect of Surfactant Chain Length and Type on the Photocatalytic Activity of Mesoporous TiO2 Nanoparticles Obtained via Modified Sol-Gel Process

Document Type : Research Article


1 Material Environment and Energy Laboratory (UR14ES26), Faculty of Sciences of Gafsa, University of Gafsa, TUNISIA

2 Faculty of Sciences of Gafsa, University of Gafsa, TUNISIA

3 Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, TUNISIA


Mesoporous amorphous and nanocrystalline titanium dioxide were prepared by simple and environmental friendly modified Sol-Gel method using cationic (C14TAB, C16TAB, C18TAB) and nonionic (Plantacare UP K55) surfactant as pore forming agent. The obtained particles were characterized by BET, TEM, FT-IR and XRD techniques. The effect of cationic surfactant chain length and type of template on the photocatalytic activity of as prepared TiO2 nanoparticles were investigated by the degradation of rhodamine B in water solution under UV irradiation. The results indicated that this process was well described by pseudo-first order kinetic model. All the prepared titanium dioxide particles with cationic and nonionic surfactant exhibited higher performance for rhodamine B photo-degradation. The sample with large pore size and small particle size which obtained by using C18TAB surfactant showed high photocatalytic activity compared with the others samples and commercial P25. The mechanism of photocatalytic degradation of rhodamine B was proposed based on the degradation products determined by GC/MS and LC/MS. The performance of the recycled TiO2 as photocatalyst was investigated.


Main Subjects

[1] Chen X., Kuo D.H., Lu D., Hou Y., Kuo Y.R., Synthesis and Photocatalytic Activity of Mesoporous TiO2 Nanoparticle Using Biological Renewable Resource of un-Modified Lignin as a Template, Microporous Mesoporous Mater., 223: 145–151 (2016).
[3] Khan S.A., Ali S., Sohail M., Morsy M.A., Yamani Z.H., Fabrication of TiO2/Ag/Ag2O Nanoparticles to Enhance the Photocatalytic Activity of Degussa P25 Titania, Aust. J. Chem., 69: 41–46 (2016).
[4] Usha K., Mondal B., Sengupta D., Das P., Mukherjee K., Kumbhakar P., Development of Multilayered Nanocrystalline TiO2 Thin Films for Photovoltaic Application, Opt. Mater., 36: 1070–1075 (2014).
[5] Lin L.Y., Ye M.H., Tsai K.W., Chen C.Y., Wu C.G., Ho K.C., Highly Ordered TiO2 Nanotube Stamps
on Ti Foils: Synthesis and Application for All Flexible Dye–Sensitized Solar Cells
, Electrochem. Commun., 37: 71–75 (2013).
[6] Ruiz A.M., Sakai G., Cornet A., Shimanoe K., Morante J.R., Yamazoe N., Microstructure Control of Thermally Stable TiO2 Obtained by Hydrothermal Process for Gas Sensors, Sens Actuator B-Chem., 103: 312–317 (2004).
[7] Zhao L., Liu Y., Wang L., Zhao H., Chen D., Zhong B., Wang J., Qi T., Production of Rutile TiO2 Pigment from Titanium Slag Obtained by Hydrochloric Acid Leaching of Vanadium-Bearing Titanomagnetite, Ind. Eng. Chem. Res., 53: 7 0–77 (2014).
[8] Chen X., Mao S.S., Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications,Chem. Rev., 107: 2891–2859 (2007).
[9] Yang H.G., Liu G., Qiao S.Z., Sun C.H., Jin Y.G., Smith S.C., Zou J., Cheng H.M., Qing G., Lu M., Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant {001} Facets, J. Am. Chem. Soc., 131: 4078–4083 (2009).
[10] Pookmanee P., Phiwchai I., Yoriya S., Puntharod R., Phanichphant S., Titanium Dioxide (TiO2) Nanopowder Prepared by the Low Temperature Solvothermal Method, Ferroelectrics, 457: 30–38 (2013).
[11] Kim C.S., Moon B.K., Park J.H., Chung S.T., Son S.M., Synthesis of Nanocrystalline TiO2 in Toluene by
a Solvothermal Route
, J. Cryst. Growth, 254: 405–410 (2003).
[13] Nian J.N., Teng H., Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor, J. Phys. Chem. B, 110: 4193–4198 (2006).
[15] Asilturk M., Sayılkan F., Erdemoglu S., Akarsu M., Sayılkan H., Erdemoglu M., Arpac E., Characterization of the Hydrothermally Synthesized Nano-TiO2 Crystallite and the Photocatalytic Degradation of Rhodamine B, J. Hazard. Mater. B, 129: 164–170 (2006).
[16] Sarkar B., Singhal N., Goyal R., Bordoloi A., Konathala L.N.S., Kumar U., Bal R., Morphology-Controlled Synthesis of TiO2 Nanostructures for Environmental Application, Catalysis Commun., 74: 43–48 (2016).
[17] Guimaraes J.L., Abbate M., Betim S.B., Alves M.C.M., Preparation and Characterization of TiO2 and V2O5 Nanoparticles Produced by Ball-Milling, J. Alloys Compd., 352: 16–20 (2003).
[18] Gu D., Wang B., Zhu Y., Wu H., Photocatalytic Degradation of Gaseous Formaldehyde by Modified Hierarchical TiO2 Nanotubes at Room Temperature, Aust. J. Chem., 69: 343–348 (2016).
[19] Meher S.R., Balakrishnan L., Sol–Gel Derived Nanocrystalline TiO2 Thin Films: Apromising Candidate for Self-Cleaning Smart Window Applications, Mater. Sci. Semicond. Process, 26: 251–258 (2014).
[20] Liu B., Zeng H.C., Fabrication of ZnO “Dandelions” via a Modified Kirkendall Process, J. Am. Chem. Soc., 126: 16744–16746 (2004).
[21] Adraider Y., Pang Y.X., Sharp M.C., Hodgson S.N., Nabhani F., Al-Waidh A., Fabrication of Titania Coatings on Stainless Steel Via Laser-Induced Deposition of Colloidal Titanium Oxide from
Sol-Gel Suspension
, Mater. Chem. Phys., 138: 245–252 (2013).
[22] Li H., Zhao G., Chen Z., Song B., Han G., TiO2–Ag Nanocomposites by Low-Temperature Sol–Gel Processing, J. Am. Ceram. Soc., 93: 445–449 (2010).
[24] Elghniji K., Saad M., Araissi M., Elaloui E., Moussaoui Y., Chemical Modification of TiO2 by H2PO4/HPO42− Anions Using the Sol-Gel Route with Controlled Precipitation and Hydrolysis: Enhancing Thermal Stability, Mater. Sci. Poland., 32: 617–625 (2014).
[25] Gong X., Wang H., Yang C., Li Q., Chen X., Hu J., Photocatalytic Degradation of High Ammonia Concentration Wastewater by TiO2, Futur Cities Environ., 1: 12-   (2015).
[26] Oseghe E.O., Ndungu P.G., Jonnalagadda S.B., Synthesis of MesoporousMn/TiO2 Nanocomposites and Investigating the Photocatalytic Properties in Aqueous Systems, Environ. Sci. Pollut. Res., 22: 211–222 (2015).
[27] Antonelli D.M., Ying Y.J., Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel Method, Angew. Chem. Int. Ed. Engl., 34: 2014–2017 (1995).
[28] Yang H.G., Zeng H.C., Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald RipeningJ. Phys. Chem. B, 108: 3492–3495 (2004).
[29] Ren T.Z., Yuan Z.Y., Su B.L., Surfactant-Assisted Preparation of Hollow Microspheres of Mesoporous TiO2, Chem. Phys. Lett., 374:170–175 (2003).
[30] Cui W., Shao M., Liu L., Liang Y., Rana D., Enhanced Visible-Light-Responsive Photocatalytic Property of PbS-Sensitized K4Nb6O17 Nanocomposite Photocatalysts, Appl. Surf. Sci., 276: 823–831 (2013).
[31] Bakre P.V., Volvoikar P.S., Vernekar A.A., Tilve S.G., Influence of Acid Chain Length on the Properties of TiO2 Prepared by Sol-Gel Method and LC-MS Studies of Methylene Blue Photodegradation, J. Colloid Inter. Sci., 474: 58–67 (2016).
[32] Rhouta B., Bouna L., Maury F., Senocq F., Lafont M.C., Jada A., Amjoud M., Daoudi L., Surfactant-Modifications of Na+-Beidellite for the Preparation of TiO-Bd Supported Photocatalysts: I-Organobeidellite Precursor for Nanocomposites, Appl. Clay Sci., 115: 260–265 (2015).
[34] International Union of Pure and Applied Chemistry., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity, Pure Appl. Chem., 87: 603–619 (1957).
[36] Oskam G., Nellore A., Penn R.L., Searson P.C., The Growth Kinetics of TiO2 Nanoparticles from Titanium (IV) Alkoxide at High Water/ Titanium Ratio, J. Phys. Chem. B, 107: 1734–1738 (2003).
[37] Liu E.Q., Guo X.L., Qin L., Shen G.D., Wang X.D., Fabrication and Photocatalytic Activity of Highly Crystalline Nitrogen Doped Mesoporous TiO2, Chin. J. Catal., 33: 1665–1671 (2012).
[39] Cui W., Qi Y., Liu L., Rana D., Hu J., Synthesis of PbS – K2La2Ti3O10 Composite and Its Photocatalytic Activity for Hydrogen Production, Prog. Nat. Sci. Mater. Int., 22: 120–125 (2012).
[40] Lente G., “Deterministic Kinetics in Chemistry and Systems Biology”, Springer, pp. 125-126 (2015).
[41] Park J.H., Jang I., Song K., Oh S.G., Surfactants-Assisted Preparation of TiO2-Mn Oxide Composites and Their Catalytic Activities for Degradation of Organic Pollutant, J. Phys. Chem. Solids, 74: 1056–1062 (2013).
[42] He K., Zhao C., Zhao G., Han G., Effects of Pore Size on the Photocatalytic Activity of Mesoporous TiO2 Prepared by a Sol–Gel Process, J. Sol-Gel Sci. Technol., 75: 557–563 (2015).