Synthesis and Characterization of a Novel Bio-Magnetically Recoverable Palladium Nanocomposite for the Photocatalytic Applications

Document Type : Research Article


1 Chemistry Department, Faculty of Science, University of Jiroft, Jiroft, I.R. IRAN

2 Chemistry Department, Faculty of Science, Kosar University of Bojnord, Bojnord, I.R. IRAN


A novel immobilized sparteine palladium (II) complex on the bio α-Fe2O3 nanoparticles was synthesized (Pd-Sparteine- α -Fe2O3). XPS, FT-IR, and ICP were used to determine compositional information. TGA and VSM, respectively proved high thermostability and magnetic properties of it. The size and morphology of this heterogeneous catalyst were investigated using SEM and TEM. Photoluminescence spectrum, BET, DRS, and EDAX of this novel nanocomposite were evaluated for further investigations. The synthesized magnetic nanohybrid was successfully exploited as a new recyclable heterogeneous photocatalyst in the degradation of 2,4- dichlorophenol under visible light irradiation. It exhibited better photocatalytic efficiency of Pd-Sparteine-α-Fe2O3 than that of pure iron oxide nanoparticles. This catalyst's high yield and the low reaction time indicated that Pd-Sparteine-α -Fe2O3 could be a promising catalyst for direct photocatalyst applications.


Main Subjects

[1] Kachbouri S., Elaloui E., Moussaou Y., The Effect of Surfactant Chain Length and Type on the Photocatalytic Activity of Mesoporous TiO2 Nanoparticles Obtained via Modified Sol-Gel Process, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(1): 17-26 (2019).
[4] Khan H., Usen N., Boffito D., Spray-dried Microporous Pt/TiO2 Degrades 4-chlorophenol under UV and Visible Light, J. Environ. Chem. Eng., 7: 103267 (2019).
[5] Wang W., Lee G.J., Wang P., Qiao Z., Liu N., Wu J.J., Microwave Synthesis of Metal-Doped ZnS Photocatalysts and Applications on Degrading 4-Chlorophenol Using Heterogeneous Photocatalytic Ozonation Process, Sep. Purify. Technol., 237: 116469 (2020).
[6] Bhattacharjee A., Ahmaruzzaman M., Devi T.B., Nath J., Photodegradation of Methyl Violet 6B and Methylene Blue Using Tin-Oxide Nanoparticles (Synthesized via a Green Route), J. Photochem. Photobiol. A Chem.,325: 116–124 (2016).
[10] Abdi V., Sourinejad I., Yousefzadi M., Ghasemi Z., Mangrove-Mediated Synthesis of Silver Nanoparticles Using Native Avicennia Marinaplant Extract from Southern Iran, Chem. Eng. Commun., 205: 1069-1076(2018).
[11] Abdi V., Sourinejad I., Yousefzadi M., Ghasemi Z., Biosynthesis of Silver Nanoparticles from the Mangrove Rhizophora mucronata: Its Characterization and Antibacterial Potential, Iranian Journal of Science and Technology, Transactions A: Science, 43: 2163–2171(2019).
[13] Moradi N., Amin M.M., Fathizadeh A., Ghasemi Z., Degradation of UV-Filter Benzophenon-3 in Aqueous solution Using TiO2 Coated on Quartz Tubes, J. Environ. Health Sci. Eng, 16: 213-228 (2018).
[15] Gnanaprakasam A. J., Sivakumar V. M., Thirumarimurugan M., Investigation of Photocatalytic Activity of Nd-Doped ZnO Nanoparticles Using Brilliant Green Dye: Synthesis and Characterization, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(2): 61-67 (2018).
[16] Malekhosseini H., Mahanpoor K., Khosravi M., Motiee F., Kinetic Modeling and Photocatalytic Reactor Designed for Removal of Resorcinol in Water by Nano ZnFe2O4/Copper Slag as Catalyst: Using Full Factorial Design of Experiment, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(3): 257-266 (2019).
[18] Zhou L., Xu Z., Yi K., Huang Q., Chai K., Tong Z., Ji H., Efficient Remediation of 2,4-dichlorophenol from Aqueous Solution Using β-cyclodextrin-based Submicron Polymeric Particles, Chem. Eng. J., 360: 531-541(2019).
[19] Ezzatahmadi N., Millar G. J., Ayoko G. A., Zhu J., Zhu R., Liang X., He H., Xi Y., Degradation of 2,4-Dichlorophenol Using Palygorskite-Supported Bimetallic Fe/Ni Nanocomposite as a Heterogeneous catalyst, Appl. Clay Sci., 168: 276-286 (2019).
[20] Chongyang L., Jinze L., Linlin S., Yaju Z., Chun L., Huiqin W., Pengwei,H. Changchang M., Yongsheng Y., Visible-Light Driven Photocatalyst of CdTe/CdS Homologous Heterojunction on N-rGO Photocatalyst for Efficient Degradation of 2,4-dichlorophenol,  J. Taiwan Institut. Chem. Engin., 93: 603-615 (2018).
[24] Naeimi A., Payandeh M., Ghara A.R., Ghadi F.E., In vivo Evaluation of the Wound Healing Properties of Bio-Nanofiber Chitosan/ Polyvinyl Alcohol Incorporating Honey and Nepeta dschuparensis, Carbohydr. Polym., 240: 116315 (2020).
[25] Naeimi A., Abbasspour S., Torabizadeh S.A., The First and Low Cost Copper Schiff Base/ Manganese Oxide Bio Nanocomposite from Unwanted Plants as a Robust Industrial Catalyst, Artif. Cells Nanomed. Biotechnol., 48: 560-571 (2020).
[27] Tang B.Z., Geng Y., Lam J.W.Y., Li B., Jing X., Wang X., Wang F., Pakhomov A.B., Zhang X.X., Processible Nanostructured Materials with ElectricalConductivity and Magnetic Susceptibility: Preparation and Properties of Maghemite/Polyaniline Nanocomposite Films, Chem Mater., 11: 1581-1589 (1999).
[28] Jensen D.R., Pugsley J.S., Sigman M.S., Palladium-Catalyzed Enantioselective Oxidations of Alcohols Using Molecular Oxygen, J. Am. Chem. Soc., 123: 7475-7476 (2001).
[29] Das S., Bhunia S., Maity T., Koner S., Suzuki Cross-Coupling Reaction over Pd-Schiff-Base Anchored Mesoporous Silica Catalyst, J. Mol. Catal. A. Chem., 394: 188-197 (2014).
[32] Mukhopadhyay K., Sarkar B.R., Chaudhari, R.V. Anchored Pd Complex in MCM-41 and MCM-48: Novel Heterogeneous Catalysts forHydrocarboxylation of Aryl Olefins and Alcohols, J. Am. Chem. Soc., 124: 9692-9693 (2002).
[34] Ghasemi E., Ziyadi H.L., Afshar A.M.L., Sillanpaa M., Iron Oxide Nanofibers: A New Magnetic Catalyst for Azo Dyes Degradation in Aqueous Solution, Chem. Eng. J., 264: 146-151 (2015).
[35] Nejat R., Mhajoub A.R., Hekmatian Z., Akhadbakht A., Pd-Functionalized MCM-41 Nanoporous Silica as an Efficient and Reusable Catalyst for Promoting Organic Reaction, RSC Adv., 5: 16029-16035(2015).
[40] Zolfigol M.A., Azadbakht T., Khakyzadeh V., Nejatyami R., Perrin D.M., C(sp2)–C(sp2) Cross Coupling Reactions Catalyzed by an Active and Highlystable Magnetically Separable Pd-Nanocatalyst in Aqueous Media, RSC Adv. 4: 40036-40042(2014).
[41] Rossi L.M., Costa N.J.S., Silva F.P., Wojcieszak R., Magnetic Nanomaterials in Catalysis: Advanced Catalysts for Magnetic Separation and Beyond, Green Chem., 16: 2906-2933 (2014).
[43] Wang Z., Yu Y., Zhang Y.X., Li S.Z., Qian H., Lin Z.Y., A Magnetically Separable Palladium Catalyst Containing a Bulky N-Heterocyclic Carbene Ligandfor the Suzuki–Miyaura Reaction, Green Chem., 17: 413-420(2015).
[44] Richard C., Boule P., Oxidizing Species Involved in Transformations on Zinc Oxide. J. Photochem. Photobiol. A Chem., 60: 235–243(1991).
[45] Shahrnoy A.A., Mahjoub A.R., Morsali, Dusek A.M.V., Eigner Sonochemical Synthesis of Polyoxometalate Based of Ionic Crystal Nanostructure: A Photocatalyst for Degradation of 2,4-dichlorophenol, Ultrason. Sonochem. 40: 174–183 (2018).
[46] Benitez F.J., Beltran-Heredia J., Acero J. L., Rubio F. J., Contribution of Free Radicals to Chlorophenols Decomposition by Several Advanced Oxidation Processes, Chemosphere, 41: 1271– 1277(2000).
[47] Nejad S.T., Shahrnoy A. A., Mahjoub A.R., Saloumahaleh,N. Khazaee E.Z., Photodegradation of 2,4-dichlorophenol by Supported Pd(X2) Catalyst (X = Cl, Br, N3): a HOMO Manipulating Point of View, Environ. Sci. Pollut. Res. Int., 25: 9969-9980 (2018).
[48] Buxton G., Greenstock V., Helman C. L., Ross W. P., A.B., Critical review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (•OH/O•–) in Aqueous Solution, J. Phys. Chem. Ref. Data, 17: 513–886 (1988).