A Rigorous Calculation Method for Determining Potential-pH Diagrams Part I: Copper in Aqueous Solutions of Various Complexing Agents

Document Type : Research Article


Department of Chemistry, Faculty of Sciences, University of Mentouri Constantine, ALGERIA


The main aim of this research is to determine optimal leaching conditions; Eh, pH and complexing agent concentrations, for recovery of Copper from hydroxide sludges such as those produced by electroplating shops, metal finishers, treatment of acid mine drainage, and industrial wastewater in general. This has been preceded by a theoretical approach and numerical and computer calculation. Potential-pH diagrams for the copper-water-ammonia, copper-water-cyanide, copper-water-glycine, copper-water-ethylenediamine (En) and copper-water-ethylene-diaminetetraacetic acid (EDTA) systems are derived at different total copper and complexing agent concentrations. The originality of our method is the introduction of a rigorous calculating method; we don’t neglect any equilibrium or species for Eh-pH diagrams and with the free concentration of complexing agent (pL-pH) diagram to show the stable regions of soluble copper species.


Main Subjects

[1] Salhi, R., Master Thesis, University of Constantine Algeria, (1995).
[2] Bouhidel, K. E., Salhi, R., “Energy and Electro-chemical Processing for a Cleaner Environment”, 97, 28, pp. 323-329, Walton, CW, Ed. Pennington: Electro-chemical society Inc (Series: Electrochemical Society Series, Vol. 97 (1998).
[3] Brian, P., Metals Recycling from Waste Sludges by Ammoniacal Leaching Followed by Solvent Extraction, EPA Contract Number: 68D01033 (2001).
[4] Jana, R. K., Pandey, B.D. and Premchand, Hydro-metallurgy, 53, p. 45 (1999).
[5] Jeffrey, M.I., Hydrometallurgy, 60, p. 7 (2001).
[6] Guan, Y., Sun Charles, X. and Han, K. N., J. Korean Inst., Resources Recycling (published earlier in a conference proceedings), 10 (1), p. 42 (2001).
[7] Schmitz Philip, A., Saskia Duyvesteyn, Johnson William, P., Larry Enloe and Jaques McMullen, Hydrometallurgy, 60, p. 25 (2001).
[8] Han, K. N., Leaching of Precious Metals from Secondary Sources Using Halogen Salts, Proceedings of the XXI International Mineral Processing  Congress, A33-40 (2000).
[9] Feng, D., and Van Deventer J.S.J., Hydrometallurgy, 63, p. 189 (2002).
[10] Peters, E., Hydrometallurgy, 29, p. 431 (1992).
[11] Bryson, J. P. and Distin, P.A., Hydrometallurgy, 3, p. 343 (1978).
[12] Bauer,  D. J.  and  Lindstrom, R. E., J. Metals, 23, p. 31 (1971).
[13] Konishi, Y., Katoh, M. and Asai, S., Metallurgical Trans., 25B, p. 695 (1994).
[14] Awakura, Y.,  Hirato, T., Kagawa,  A., Yamada, Y. and Majima, H., Metallurgical Trans., 22B, 569 (1991).
[15] Konishi, Y., Katoh, M. and Asai, S., Metallurgical Trans., 2B, 295 (1991).
[16] Karagolge, Z., Alkan, M. and Kocakerim, M.M., Metallurgical Trans., 23B, 409 (1992).
[17] Ke, J-J., Yue, L-d. and Liu, W-D., Hydrometallurgy, 16, p. 325 (1986).
[18] Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston, (1974).
[19] Zhong, S., Hepworth, M. T., Hydrometallurgy, 38 (1) p. 15 (1995).
[20] Bernard, M., Busnot, F., Usuel De Chimie Générale Et Minérale. 2éme Edition BORDAS, Paris, (1984).
[21] Charlot, G., Les Réactions Chimiques En Solution Aqueuse Et Caractérisation Des Ions. 7° Edition –MASSON, (1983).
[22] Wagman,  D. D., Evans, W. H., Parker, V. B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L. and Nuttall, R.L., The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data, 11, Supplement No. 2 (1982).
[23] Smith, R.M. and Martell, A.E., “Critical Solubility Constants”, Vol. 1-6, New York, Plenum (1977).