Box-Behnken Experimental Design Method Applied to Optimize Photo-Fenton Degradation of Pharmaceutical Atorvastatin Calcium in Aqueous Solution

Document Type : Research Article


1 Mohamed El Bachir El Ibrahimi University, Bordj Bou Arreridj, ALGERIA

2 Centre de Développement des Energies Renouvelables, CDER, BP 62 Route de l’Observatoire, Bouzaréah, Algiers, ALGERIA

3 Unité de Développement des Equipements Solaires, UDES, Centre de Développement des Energies Renouvelables, CDER, Tipaza, ALGERIE


Due to the harmful effects on the environment and public health, Atorvastatin calcium (ATO) has to be removed from wastewater using the photo-Fenton process. The novelty of this study is based on the modeling and the optimization of the operating parameters affecting the efficiency of the process by using the Box-Behnken Design (BBD). Operating factors such as pollutant concentration [20-40 mg/L], iron concentration [1-5 mM], and H2O2 concentration [5-10 mM] were investigated to evaluate the Chemical Oxygen Demand (COD) abatement. A mathematical model of pollutant degradation was established using the MODDE 6.0 software and statistical analysis showed good agreement between experimental results and predictive values with an error of less than 5%, which indicates the soundness of the developed model. The results suggested that the most influential factor on the photo-Fenton degradation of the drug was the initial ATO concentration with an effect of (-22.86), the second was the amount of the H2O2 with an effect of (+2.82), the third was the concentration of Fe3+ ions with an effect of (-2.79). The model obtained by BBD corresponding to the best value of the COD abatement rate (100%)   of ATO led to the following optimal conditions: initial concentration of pollutant equal to 20 mg/L, a catalyst concentration equal to 1 mM and a concentration of hydrogen peroxide equal to 10 mM.


Main Subjects

[1] Madjene F., Assassi M., Benhabiles O., Yeddou-Mezenner N., Optimisation and Kinetic Modeling of Atenolol Degradation by ZnO under Solar Irradiation, Inter. J. Environ. Anal. Chem., 1-12 (2021).
[2] Bahadoran A., Najafizadeh M., Liu Q., De Lile J.R., Zhang D., Masudy-Panah S., Ramakrishna S., Fakhri A., Gupta V.K., Co-Doping Silver and Iron on Graphitic Carbon Nitride-Carrageenan Nanocomposite for the Photocatalytic Process, Rapidly Colorimetric Detection and Antibacterial Properties, Surf. Inter., 26:101279 (2021)
[6] Conley J.M, Symes S.J., Kindelberger S.A., Richards S.M., Rapid Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of a Broad Mixture of Pharmaceuticals in Surface Water, J. Chromatog. A., 1185(2): 206-215 (2008)
[7] Vanderford B.J., Snyde S.A., Analysis of Pharmaceuticals in Water by Isotope Dilution Liquid Chromatography/Tandem Mass Spectrometry, Environ. Sci. Technol., 40(23): 7312-7320 (2006).
[8] Tete V.S., Nyoni H., Mamba B.B., Msagati T.A.M., Occurrence and Spatial Distribution of Statins, Fibrates and Their Metabolites in Aquatic Environments, Arab. J. Chem., 13(2): 4358-4373 (2020).
[9] D’abrosca B., Fiorentino A., Izzo A., Cefarelli G., Pascarella M.T., Uzzo P., Monaco P., Phytotoxicity Evaluation of Five Pharmaceutical Pollutants Detected in Surface Water on Germination and Growth of Cultivated and Spontaneous Plants,             J. Environ. Sci. Health A., 43(3): 285–294 (2008).
[10] Ghirlanda G., Oradei A., Manto A., Lippa S., Uccioli L., Caputo S., Greco A.V., Littarru G.P., Evidence of Plasma CoQ10-Lowering Effect by HMG-CoA Reductase Inhibitors: A Double-Blind, Placebo-Controlled Study, J. Clin. Pharm., 33(3): 226-229 (1993).
[11] Macedo A.F., Taylor F.C., Casas J.P., Adler A., Prieto-Merino D., Ebrahim S., Unintended Effects of Statins from Observational Studies in the General Population: Systematic Review and Meta-Analysis. BMC Med., 12(51): 1-13 (2014)
[12] Bellosta S., Corsini A., Statin Drug Interactions and Related Adverse Reactions, Expert. Opin. Drug. Saf., 11(6): 933-946 (2012).
[14] Golomb B.A., Evans M.A., Statin Adverse Effects: A Review of the Literature and Evidence for a Mitochondrial Mechanism, Am. J. Cardiovasc. Drugs., 8(6): 373-418 (2008).
[15] Kümmerer K., Resistance in the Environment, J. Antimicrob. Chemother., 54(2): 311-320 (2004).
[16] Patel M., Kumar R., Kishor K., Mlsna T., Pittman Jr C.U., Mohan D., Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods, Chem. Rev., 119(6): 3510–3673 (2019).
[17] Kais H., Yeddou Mezenner N., Trari M., Madjene F., Photocatalytic Degradation of Rifampicin: Influencing Parameters and Mechanism. Russ. J. Phys. Chem. A., 93(13): 2834-2841 (2019).
[18] Cecconet D., Molognoni D., Callegari A., Capodaglio A.G., Biological Combination Processes for Efficient Removal of Pharmaceutically Active Compounds from Wastewater: A Review and Future Perspectives, J. Environ. Chem. Eng., 5(4): 3590-360 (2017).
[19] Mir-Tutusaus J.A., Parladé E., Llorca M., Villagrasa M., Barcelócd D., Rodriguez-Mozaz S., Martinez-Alonso M., Gaju N., Caminal G., Sarrà M., Pharmaceuticals Removal and Microbial Community Assessment in a Continuous Fungal Treatment of non-Sterile Real Hospital Wastewater after a Coagulation-Flocculation Pretreatment, Water Res., 116: 65-75 (2017).
[20] Sewoon K., Chang MinP., Am J., Min J., Arturo J., Hernández M., Miao Y., Jiyong H., Removal of Selected Pharmaceuticals in an Ultrafiltration-Activated Biochar Hybrid System, J. Membrane Sci., 570–571: 77-84 (2019).
[21] Faghihian, H., Nejati-Yazdinejad, M., Removal of Cysteine (an Aliphatic Amino Acid) by Natural Clinoptilolite, Iran. J. Chem. Chem. Eng. (IJCCE), 30(2): 15-22 (2011).
[22] Masoudi F., Kamranifar M., Naghizadeh A., Efficiency of Chitosan Extracted from Persian Gulf Shrimp Shell in Removal of Penicillin G Antibiotic from Aqueous Environment, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 235-244 (2020).
[23] Sahraeian S., Alipour V., Heidari M., Rahmanian O., Karimi Abdolmaleki, M., Application of Photocatalytic Process Using UV/TiO2 for Degradation of Cefepime: A Comparison between Photocatalytic and Photolytic, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3): 796-803 (2021).
[24] Ali I., Alharbi O.M.L., ALOthman Z.A., Alwarthan A., Al-Mohaimeed A.M., Preparation of a Carboxymethylcellulose-Iron Composite for Uptake of Atorvastatin in Water, Intern. J. Biol. Macromol., 132(1): 244-253 (2019).
[25] Sulaiman S., Khamis M., Nir S., Lelario F., Scrano L., Bufo S.A., Mecca G., Karaman R., Stability and Removal of Atorvastatin, Rosuvastatin and Simvastatin from Wastewater, Environ. Technol., 36(24): 3232-3242 (2015).
[26] Souza F.S., Da Silva V.V., Rosin C.K., Hainzenreder L., Arenzon A., Pizzolato T., Jank L., Féris L.A., Determination of Pharmaceutical Compounds in Hospital Wastewater and their Elimination by Advanced Oxidation Processes, J. Environ. Sci. Health, A., 53(3): 213-221 (2018).
[27] Mousavi S.A.R., Mahvi A.H., Nasseri S., Ghaffari Sh., Effect of Fenton Process (H2O2 / Fe2+) on the Removal of Linear Alkylbenzene Sulfonate Using Central Composite. Iran. J. Environ. Health Sci. Eng., 8(2): 129-138 (2011).
[28] Buthiyappan A., Shah R.S.S.R.E., Asghar A., Abdul Raman A., Daud MAW., Ibrahim, S., Tezel F.H., Textile Wastewater Treatment Efficiency by Fenton Oxidation with Integration of Membrane Separation System, Chem. Eng. Commu., 206(4): 541-557 (2019).
[30] Arghavan F.S., Al-Musawi T.J., Allahyari E., Moslehi M.H., Nasseh N., PanahiA.H., Complete Degradation of Tamoxifen Using FeNi3@SiO2@ZnO as a Photocatalyst with UV Light Irradiation: A Study on the Degradation Process and Sensitivity Analysis Using ANN Tool, Mater. Sci. Semicond. Process., 128: 105725 (2021).
[31] Wen J., Liu X., Liu L., Ma X., Fakhri A., Gupta V.K., Bimetal Cobalt-Iron based Organic Frameworks with Coordinated Sites as a Synergistic Catalyst for Fenton Catalysis Study and Antibacterial Efficiency, Colloids Surf. A Physicochem. Eng., 610: 125683 (2021).
[32] O’Dowd K., Pillai S.C., Photo-Fenton Disinfection at near Neutral pH: Process, Parameter Optimization and Recent Advances, J. Environ. Chem. Eng., 8(5): 104063 (2020).
[33] Pignatello J., Dark and Photoassisted Iron (3+)-Catalyzed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide. Environ. Sci. Technol., 26(5): 944-951 (1992).
[34] Sabaikai W., Sekine M., Tokumura M., Kawase Y., UV Light Photo-Fenton Degradation of Polyphenols in Oolong Tea Manufacturing Wastewater, J. Environ. Sci. Health. A., 49(2): 193–202 (2014).
[35] Tassalit D., Chekir N., Benhabiles O., Mouzaoui O., Mahidine S., Kasbadji Merzouk N., Abbas F.K., Effect and Interaction Study of Acetamiprid Photodegradation using Experimental Design, Water Sci. Techno., 74(8): 1953-1963 (2016).
[36] Bakhtiari G., Bazmi M., Abdouss M., Royaee S.J., Adsorption and Desorption of Sulfur Compounds by Improved Nano Adsorbent: Optimization Using Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 36(4): 69-79 (2017).
[37] Danane F., Bessah R., Rhiad A., Tebouche L., Madjene F., Kheirani A.Y., Bouabibsa R., Experimental Optimization of Waste Cooking Oil Ethanolysis for Biodiesel Production Using Response Surface Methodology (RSM), Sci. Tech. Energ. Transition., 77(14): 1-10 (2022)
[38] Pourfalatoon S., Mazaheri H., Hassani Joshaghani, A., Shokri, A., Employing a New Catalytic Ozonation (O3/MnO2/CP) for Degradation of Nitro Toluene in Aqueous Environment Using Box-Behnken Experimental Design, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3): 804-814 (2021)
[39] Madjene F., Assassi M., Chokri I., Enteghar T., Lebik H., Optimization of Photocatalytic Degradation of Rhodamine B Using Box–Behnken Experimental Design: Mineralization and Mechanism, Water Environ. Res., 93(1): 112-122 (2021).
[40] Assassi M., Madjene F., Harchouche S., Boulfiza H., Photocatalytic Treatment of Crystal Violet in Aqueous Solution: Box–Behnken Optimization        and Degradation Mechanism, Environ. Prog. Sustain. Energy, 40(6): e13702 (2021).
[42] Wicaksono Y., Wisudyaningsih B., Siswoyo T.A. Tropic., Enhancement of Solubility and Dissolution Rate of Atorvastatin Calcium by Co-Crystallization, J. Pharm. Res., 16(7): 1497-1502 (2017).
[43] Sarrai A.E., Hanini S., Kasbadji Merzouk N., Tassalit D., Szabó T., Hernádi K., Nagy L., Using Central Composite Experimental Design to Optimize the Degradation of Tylosin from Aqueous Solution by Photo-Fenton Reaction, Mater., 9(6): 428 (2016).
[44] El-Hanafi N., Mehibel L., Li H.Z., Poncin S., Bensadok K., Mineralization of the Pharmaceutical β-Blocker Atenolol by Means of Indirect Electrochemical Advanced Oxidation Process: Parametric and Kinetic Study, Sep. Sci. Technol., 49(18): 2942-2950 (2014).
[45] Nidheesh P.V., Gandhimathi R., Trends in Electro-Fenton Process for Water and Wastewater Treatment: An Overview, Desalination., 299: 1-15 (2012).
[46] Wu T., Englehardt J.D., A New Method for Removal of Hydrogen Peroxide Interference in the Analysis of Chemical Oxygen Demand, Environ. Sci. Technol., 46(4): 2291-2298 (2012).
[47] O'Dell J.W., METHOD 410.4. The Determination of Chemical Oxygen Demand by Semi-Automated Colorimetry, Revision 2.0, (1993).
[50] Devi L.G., Raju K.S.A., Rajashekhar K.E., Kumar S.G., Degradation Mechanism of Diazo Dyes by Photo-Fenton-Like Process: Influence of Various Reaction Parameters on the Degradation Kinetics, Bulg. Chem. Commun., 41(4): 385-390 (2009).
[51] Arvis P., Guivarc’h-Levêque A., Varlan E., Colella C., Lehert P., Les Modèles Prédictifs de Grossesse en AMP, J. Gyné. Obst. Biol. Reprod., 42(1): 12-20 (2013).
[52] Lundstedt T., Seifert E., Abramo L., Thelin B., Nyström A., Pettersen J., Bergman R., Experimental Design and Optimization, Chemometrics Intell. Lab. Syst., 42: 3-40 (1998).
[53] Zhang H., Ran X., Wu X., Zhang D., Evaluation         of Electro-Oxidation of Biologically Treated Landfill Leachate Using Response Surface Methodology,       J. Hazard Mater., 188(1-3): 261-268 (2011).
[54] Arslan-Alaton I., Tureli G., Olmez-Hanci T., Treatment of Azo Dye Production Wastewaters Using Photo-Fenton-Like Advanced Oxidation Processes: Optimization by Response Surface Methodology, J. Photoch. Photobio. A., 202(2-3): 142-153 (2009).
[57] Jehangeer K., Muhammad T., Mamriz M., Muhammad H.M., Inam U., Hizb U.K., Abdur R., Fazli A., Muhammad S., Abdul N., Application of Photo-Fenton System (UV/ H2O2/ Fe2+) for Efficient Decolorization of Azo-Dye Acid Yellow 17 in Aqueous Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 127-140 (2020).
[58] Razavi B., Ben Abdelmelek S., Song W., O’Shea K.E., Cooper W.J., Photochemical Fate of Atorvastatin (Lipitor) in Simulated Natural Waters, Water Res., 45(2): 625-631 (2011).
[59] Fayyadh S., Nurfaizah A., Synthesis of Green Ferric Nanoparticles from Celery Leaves for the Dye Decolorization by Fenton Oxidation, Iran. J. Chem. Chem. Eng. (IJCCE), 41(11): 3567-3579 (2022).
[60] Sulaiman S., Khamis M., Nir S., Lelario F., Scrano L., Bufo S.A., Mecca G., Karaman R., Stability and Removal of Atorvastatin, Rosuvastatin and Simvastatin from Wastewater, Environ. Technol., 36(24): 3232-3242 (2015).
[62] da Silva W.L., Lansarin M.A., Livotto P.R., dos Santos J.H.Z., Photocatalytic Degradation of Drugs by Supported Titania-Based Catalysts Produced from Petrochemical Plant Residue, Powder Technol., 279: 166-172 (2015).