Electronic Structure, Biological Activity, Spectral Analysis, NBO, NLO, and Thermodynamic Properties of 3-Chloro-4-Hydroxyquinolin-2(1H)-One. DFT Approach

Document Type : Research Article

Author

Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11711, Cairo, EGYPT

Abstract

Chlorination of 3-acetyl-4-methylthioquinolin-2(1H)-one (1) with sulfuryl chloride may lead to 3-(2,2-dichloroacetyl)-4-methylthioquinolin-2(1H)-one (2). Whereas analytical and spectral results  for the product of this reaction evoked the proposal of obtaining 3-chloro-4-hydroxyquinolin-2(1H)-one (3), which was found by reduction of 3,3-dichloroquinolin-2,4-dione.  Density Functional Theory (DFT) and time-dependent density functional theory (TD-DFT) calculations of the electronic structure at the B3LYP/6-311++G (d,p) level of theory were used to investigate the geometries, linear polarizability 鉄Δ饾浖鉄, first order hyperpolarizability 鉄潧解煩, natural bonding orbital (NBO), molecular electrostatic potential contours (MEP&ESP), electrophilicity (ω), and UV-Vis spectra, in both ethanol and dioxane solvents for compound 3. The geometrical and energetic characteristics have been thoroughly studied to determine why compound 3 was formed instead of another expected result compound 2. At the same time, the thermo-chemical parameters, NMR, harmonic vibration frequencies, and equilibrium geometries were computed. The calculated acidity constant (pKa) for the protonated and deprotonated forms in ethanol for the present compound 3. Band maxima (λmax) and spectra intensities are reflected as blue and red shifts in the solvent dependence. The excited state was identified and contributed to the electronic configurations. Finally, DFT calculations were used to connect the structure-activity relationship (SAR) with real antibacterial results for compound 3.

Keywords

Main Subjects


[1] Sarveswari S., Vijayakumar V., Siva R., Priya R., Synthesis of 4-Hydroxy-2(1H)-Quinolone Derived Chalcones, Pyrazolines and their Antimicrobial, in Silico Antimalarial Evaluations, Appl. Biochem. Biotechnol., 175: 43-64 (2015).
[2] Narwal S., Kumar S., Verma P.K., Synthesis and Therapeutic Potential of Quino-Line Derivatives, Res. Chem. Interned., 43: 2765–2798 (2017).
[3] Martinez P., Krake S., Poggi M., Campbell S., Willis P., Dias L., 2,3,8-Trisubsti-Tuted Quinolines with Antimalarial Activity, An. Acad. Bras. Cienc., 90: 1215–1231 (2018).
[4] Casal J., Asís S., Natural and Synthetic Quinoline Derivatives as Antituberculosis Agents, Tuberc. Res. Treat., 2: 1007 (2017).
[5] Shang X.F., Morris-Natschke S.L., Liu Y.Q., Guo X., Xu X.S., Goto M., Li J.C., Yang G.Z., Lee K.H., Biologically Active Quinoline and Quinazoline Alkaloid's part I, Med. Res. Rev., 38: 775–828 (2018).
[6] Mopuri D., Syed S.V., Madhulatha A., Docking, Synthesis and Biological Eval-Uation of Novel Quinoline Containing Schiff Bases for Anti-Inflammatory and Antioxidant Activities, Int. J. Pharm. Sci. Res., 11: 721–731 (2020).
[7] Li K., Li Y., Zhou D., Fan Y., Guo H., Ma T., Wen J., Liu D., Zhao L., Synthesis, and Biological Evaluation of Quinoline Derivatives as Potential Anti-Prostate Cancer Agents and Pim-1 Kinase Inhibitors, Bioorg. Med. Chem., 24: 1889–1897 (2016).
[8] Ahsan M.J., Shastri S., YYadav R., Hassan M.Z., Bakht M.A., Jadav S.S., Yasmin S., Synthesis and Antiproliferative Activity of Some Quinoline and Oxadiazole Derivatives, Org. Chem. Int., 2016: 1–10 (2016).
[8] Chabukswar A.R., Kuchekar B.S., Jagdale S.C., Lokhande P.D., Chabuk-swar V.V., Shisodia S.U., Mahabal R.H., Londhe A.M., Ojha N.S., Synthesis and Evaluation of Analgesic, Anti-Asthmatic Activity of (E)-1-(8-Hydroxyquinolin-7-yl)-3-Phenylprop-2-en-1 Ones, Arab. J. Chem., 9: 704 –712 (2016).
[9] Zielger E., Salvador R., Kapp Th., Synthesen Von Heterocyclen, 41, Mitt: -Uber Cyclische Dichlormalonyl-Verbindungen, Monatsh Chem., 93: 1376-1382 (1962).
[10] Abdel Halim S., Ibrahim M.A., Synthesis, DFT computational insights on Structural, Optical, Photoelectrical Characterizations and Spectroscopic Parameters of the Novel (2E)-3-(4-Methoxy-5-oxo-5H-furo[3,2-g] Chromen-6-yl) Acrylonitrile (MOFCA), J. Mol. Struct., 1223: 129316-129331 (2021).
[11] Abdel-Halim S., Ibrahim M.A., Synthesis, Synthesis, FT-IR, Structural, Thermochemical, Electronic Absorption Spectral, and NLO Analysis of the Novel 10-Methoxy-10H-furo[3,2-g] Chromeno[2,3-b] [1,3] Thiazolo[5,4-e] Pyridine-2,10(3H)-Dione (MFCTP): a DFT/TD-DFT Study, RSC Adv., 11: 32047–32066 (2021).
[12] Abdel Halim S., Ibrahim M.A., Synthesis, Density Functional Theory Band Structure Calculations, Optical, and Photoelectrical Characterizations of the Novel (9-Bromo-3-Cyano-5-Oxo-1,5-Dihydro-2H-Chromeno[4,3-b] Pyridin- 2ylidene) Propanedinitrile, J. Heterocyclic Chem., 56: 2542-2554 (2019).
[13] Abdel Halim S., Ali L.I., Sanad S.G., Theoretical Calculations of Solvation 12-Crown-4 (12CN4) in Aqueous Solution and its Experimental Interaction with Nano CuSO4, Int. J. Nano Dimens., 8: 142-158 (2017).
[14] Abdel Halim S., Khalil A.K., TD-DFT calculations, NBO Analysis and Electronic Absorption Spectra of Some Thiazolo[3,2-a] Pyridine Derivatives, J. Mol. Struct., 1147: 651-667 (2017).
[15] Abdel Halim S., Ibrahim M.A., Synthesis, DFT Calculations, Electronic Structure, Electronic Absorption Spectra, Natural Bond Orbital (NBO) and Nonlinear Optical (NLO) Analysis of the Novel 5-Methyl-8H-benzo[h]Chromeno[2,3-b] [1,6] Naphthyridine-6(5H),8-Dione (MBCND), J. Mol. Struct., 1130: 543–558 (2017).
[16] Govindarajan M., Karabacak M., FT-IR, FT-Raman, and UV Spectral Investigation; Computed Frequency Estimation Analysis and Electronic Structure Calculations on 4-Hydroxypteridine, J. Mol. Struct., 1038: 114–125 (2013).
[17] Asif Mahmood, Salah Ud-Din Khan, Usman Ali Rana, Mudassir Hussain Tahir, Red Shifting of Absorption Maxima of Phenothiazine Based Dyes by Incorporating Electron-Deficient Thiadiazole Derivatives as P-Spacer, Arabian Journal of Chemistry, 12: 1447–1453 (2019).
[18] Asif Mahmood, Salah Ud-Din Khan, Fazal ur Rehman, Assessing the Quantum Mechanical Level of Theory for Prediction of UV/Visible Absorption Spectra of Some Aminoazobenzene Dyes, Journal of Saudi Chemical Society, 19: 436–441 (2015).
[19] Asif M.Muhammad S.Muhammad A.Muhammad Imran A., Bilal K., Theoretical Investigation for the Designing of Novel Antioxidants, Canadian Journal of Chemistry, 91: 0356 (2012).
[20] Ahmed S., Zainab Al S., Synthesis, Characterization and Antimicrobial Activity of Some New Tetrazole Derivatives from Hydrazones, Iran. J. Chem. Chem. Eng. (IJCCE), 41(7): 2247-2262, (2022).
[21]  Gaussian 09, Revision A.1, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., J. Cheeseman R., Scalmani G., Barone V., Mennucci B., Petersson G.A., H Nakatsuji., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Y Honda., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., F Ogliaro., M Bearpark., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., J Tomasi., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., J. Cross B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., R Martin.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian, Inc., Wallingford CT, (2009).
[22] GaussView, Version 5, Dennington R., Keith T., Millam J., Semichem Inc., Shawnee Mission KS, (2009).
[23] Shahab S., Kumar R., Darroudi M., Borzehandani M.Y., Molecular Structure and Spectroscopic Investigation of Sodium (E)-2-Hydroxy-5-((4-Sulfonatophenyl) Diazenyl) Benzoate: A DFT Study, J. Mol. Struct., 1083: 198–203 (2015).
[24] Irfan A., Al-Sehemi A.G., Kalam A., Structural, Electronic and Charge Transfer Studies of Dianthra[2,3-b:2鈥,3鈥-f]Thieno[3,2-b]Thiophene and its Analogues: Quantum Chemical Investigations, J. Mol. Struct., 1049: 198–204 (2013).
[25] Irfan A., Al-Sehemi A., Muhammad S., Investigating the Effect of Acene-Fusion and Trifluoroacetyl Substitution on the Electronic and Charge Transport Properties by Density Functional Theory, Synth. Met., 190: 27–33 (2014).
[26] Becke A.D., Density鈥怓unctional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys. 98: 5648–5652 (1993).
[27] Yanai T., Tew D., Handy N., A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP) Chem. Phys. Lett., 393: 51–57 (2004).
[28] Lee C.T., Yang W.T., Parr R.G.B., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev., 37: 785–790 (1988).
[29] Petersson D.A., Allaham M.A., A Complete Basis Set Model Chemistry. II. Open鈥怱hell Systems and the Total Energies of the First鈥怰ow Atoms, J. Chem. Phys. 94: 6081–6090 (1991).
[30] Wolinski K., Hinton J.F., Pulay P., Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations, J. Am. Chem. Soc., 112: 8251–8260 (1990).
[31] Sarafran M., Komasa A., Adamska E.B., Molecular Structure, Vibrational Spectroscopic (FT-IR, FT-Raman), UV and NBO Analysis of 2-Chlorobenzonitrile by Density Functional Method, J. Mol. Struct., 827: 101–107 (2007).
[32] Khoshtarkib Z., Ebadi A., Alizadeh R., Ahmadi R., Amani V., Dichloridobis (Phenanthridine- κN) Zinc (II), Acta Crystallographica Section E: Structure Reports Online, 65: (2009).
 [33] Amani V., Ahmadi R., Naseh M., Ebadi A., Synthesis, Spectroscopic Characterization, Crystal Structure and Thermal Analyses of Two Zinc (II) Complexes with Methanolysis of 2-Pyridinecarbonitrile as a Chelating Ligand, Journal of the Iranian Chemical Society 14: 635–642 (2017).
 [34] Afshar, M. Adsorption of Lomustin Anticancer Drug on the Surface of Carbon Nanotube: A Theoretical Study. Eurasian Chemical Communications, 2: 595–603 (2020).
 [35] Shahzad H., Ahmadi R., Adhami F., Najafpour J., Adsorption of Cytarabine on the Surface of Fullerene C20: A Comprehensive DFT Study, Eurasian Chemical Communications, 2: 162–169 (2020).
[36] Young D.C., “Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (Electronic)”, John Wiley & Sons Inc., New York, (2001).
[37] Lambert J.B., Shurvell H.F., Vereit L., Cooks R.G., Stout G.H., "Organic Structural Analysis", Academic Press, New York, (1976).
[38] Kalsi P.S., Spectroscopy of Organic Compounds, Academic Press, New York, (2002).
[39] Macoonald J.N., Mackay S.A., Tyler J.K., Cox A.P., Ewart I.C.  Science of Synthesis: Houben-Weyl Methods of Molecular Transformations, J. Chem. Soc. Faraday Trans. II., 77: 79-89 (1981).
[40] Sajan D.Y., Erdogdu R.O., Reshmy K., Dereli K., Thomas K., Hubert I.,   DFT-Based Molecular Modeling, NBO Analysis and Vibrational Spectroscopic Study of 3- (Bromoacetyl) Coumarin, J. Spectrochim. Acta A, 82: 118 – 125 (2011).
 [41] Lide D. R., The Chemistry of Organic Sulfur Compounds, Tetrahedron. 17: 125-135 (1962).
[42] Duan X., Huang Y., Cui Y., Wang J., Lieber C.M., Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices, Nature 66-69 (2001)
[43] Luque F.J., López J.M., Orozco M., Electrostatic Interactions of a Solute with a Continuum. a Direct Utilization of Ab Initio Molecular Potentials for the Prevision of Solvent Effects, Theor. Chem. Acc., 103: 343-345 (2000).
[44] Okulik N., Jubert A.H., Theoretical Analysis of the Reactive Sites of Non-Steroidal Anti-Inflammatory Drugs, Int. Elect. J. Mol. Des., 4: 17-30 (2005).
[45] Politzer P., Murray J.S., The Fundamental Nature and Role of the Electrostatic Potential in Atoms and Molecules, Theor. Chem. Acc., 108: 134-142 (2002).
[46] Nagabalasubramanian P.B., Periandy S., Mehmet K., Govindarajan M., Molecular Structure, Vibrational, Electronic, and thermal Properties of 4- Vinylcyclohexene by Quantum Chemical Calculations, Spectrochim. Acta Mol. Biomol. Spectrosc., 145: 340–352 (2015).
[47] Mariappan G., Sundaraganesan N., FT-IR, FT-Raman, NMR Spectra, Density Functional Computations of the Vibrational Assignments (for Monomer and Dimer) and Molecular Geometry of Anticancer Drug 7-Amino-2-Methylchromone, J. Mol. Struct., 1063: 192–202 (2014). 
[48] Zhang C.R., Chen H.S., Wang G.H., Structure and Properties of Semiconductor Micro Clusters Gan Pn (N=1-4): A First Principal Study. Res. Chin. U,  20: 640-646 (2004).
[49] Sun Y., Chen X., Sun L., Guo X., Lu W., Nanoring Structure and Optical Properties of Ga 8 As 8. Chem. Phys. Lett., 381: 397-403 (2003).
[50] a) Natorajan S., Shanmugam G., MartinCryst S.A., Technal Res., 43: 561-570 (2008) Chemia D.S., Zysss J., Orlando, FL, (1987) b) Bradshow D.S., Andrews D.L., J. Nonlinear Opt. Phys. Matter, 18: 285-295 (2009).
[51] Topol I.A., Tawa G.J., Burt S.K., Rashin A.A., On the Structure and Thermodynamics of Solvated Monoatomic Ions Using a Hybrid Solvation Model. J. Chem. Phys., 111(24): 10998–11014 (1999).
[52] Jang Y. H.,  Sowers L.C., Ça千in T., Goddard W.A., First Principles Calculation of PKa Values for 5-Substituted Uracils, J. Phys. Chem. A 2001, 105: 274–280 (2001).
[53] Tissandier M.D., Cowen K.A., Feng W.Y., Gundlach E., Cohen M.H., Earhart A.D., Coe J.V., Tuttle T.R., The Proton’s Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data,J. Phys. Chem. A, 102(40): 7787–7794 (1998).
[54] Camaioni D.M., Schwerdtfeger C.A., Comment on “Accurate Experimental Values for the Free Energies of Hydration of H+ , OH- , and H3O+.” J. Phys. Chem. A, 109: 10795–10797 (2005).
[55] Oda M., Sugiyama A., Takeuchi R., Fujiwara Y., Miyatake R., Abe T., Kuroda, S., Synthesis, Molecular Structure, and Properties of 2-(2-Hydroxyphenyl )-1- Azaazulene, Eur. J. Org. Chem., 6: 2231–2236 (2012).
[56] Rastogi V.K., Palafox M.A., Tanwar P.P., Mittal L., 3, 5-Difluorobenzonitrile: Ab initio Calculations, FTIR and Raman Spectra, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 58: 1987-2004 (2002).