Numerical Investigation of Melting-Freezing Cycle of Phase Change Material PCM Contained in Finned Cylindrical Heat Storage Systems Integrated with Nano-Particles Additives

Document Type : Research Article

Authors

Department of Mechanical Engineering, Tarbiat Modares University, Tehran, I.R.IRAN

Abstract

Thermal energy storage systems containing phase change materials are widely used in industry. This investigation was done to improve the heat transfer performance of the charging and discharging processes (melting/freezing cycles) for heat exchangers containing phase change materials (Paraffin wax) with Nano-particles ( ), based on the total required time to complete the charging and discharging processes during the cycle. Using the enthalpy porosity technique to analyze the phase change phenomenon during the charging and discharging processes, a numerical model has been developed to study the heat transfer performance of the cycle In contrast, the influencing parameters, such as the geometric, thermophysical, and hydraulic parameters, are changed. The study was carried out in four arrangements: a base case, a reversed chamber, and each with two flow directions. For each arrangement, the effects of the volume fraction of the Nano-particles (0, 2, and 5%) on the melting/freezing average have been studied. The results show that by changing the above parameters, the total charge and discharge cycle time of the heat exchanger improves from 101 hours to 56 hours, which means 44.5% for the inversed chamber and the direction of flow, and 5% for Nano-particles.

Keywords

Main Subjects


[1] Bouhal T., Meghari Z., Rhafiki T.El, Kousksou T., Jamil A., Ben Ghoulam E., Parametric CFD Analysis and Impact of PCM Intrinsic Parameters on Melting Process Inside Enclosure Integrating Fins: Solar Building Applications, J. Build. Eng., 20: 634–646 (2018).
[2] Deng S., Nie C., Jiang H., Ye W.-B., Evaluation and Optimization of Thermal Performance for a Finned Double Tube Latent Heat Thermal Energy Storage, Int. J. Heat Mass Transf., 130: 532–544 (2019).
[3] Sefidan A. M., Sojoudi A., Saha S.C., Cholette M., Multi-Layer PCM Solidification in a Finned Triplex Tube Considering Natural Convection, Appl. Therm. Eng., 123: 901–916 (2017).
[4] Liang H., Niu J., Gan Y., Performance Optimization for Shell-And-Tube PCM Thermal Energy Storage, J. Energy Storage, 30: 101421 (2020).
[5] Zhang S., Pu L., Xu L., Liu R., Li Y., Melting Performance Analysis of Phase Change Materials in Different Finned Thermal Energy Storage, Appl. Therm. Eng., 176: 115425 (2020).
[6] Nóbrega C.R.E.S., K. Ismail A.R., Lino F.A.M., Solidification Around Axial Finned Tube Submersed in PCM: Modeling and Experiments, J. Energy Storage, 29: 101438 (2020).
[7] Mahdi J.M. Nsofor E.C., Melting Enhancement in Triplex-Tube Latent Thermal Energy Storage System Using Nanoparticles-Fins Combination, Int. J. Heat Mass Transf., 109:  417–427 (2017).
[9] Jiménez-Arreola M., Pili R., Dal Magro F., Wieland C., Rajoo S., Romagnoli A., Thermal Power Fluctuations in Waste Heat to Power Systems: An Overview on the Challenges and Current Solutions, Appl. Therm. Eng., 134: 576–584 (2018).
[11] Mousavi S., Siavashi M., Heyhat M.M., Numerical Melting Performance Analysis of a Cylindrical Thermal Energy Storage Unit Using Nano-Enhanced PCM and Multiple Horizontal Fins, Numer. Heat Transf. Part A Appl., 75(8): 560–577 (019).
[12] Xu H., Wang N., Zhang C., Qu Z., Cao M., Optimization on the Melting Performance of Triplex-Layer PCMs in a Horizontal Finned Shell and Tube Thermal Energy Storage Unit, Appl. Therm. Eng., 176: 115409 (2020).
[13] Yang X., Guo J., Yang B., Cheng H., Wei P., He Y.-L., Design of Non-Uniformly Distributed Annular Fins for a Shell-and-Tube Thermal Energy Storage Unit, Appl. Energy, 279: 115772 (2020).
[15] Ju Y., et al., “Discharge Enhancement in a Triple-Pipe Heat Exchanger Filled with Phase Change Material, Nanomaterials, 12(9): 1605 (2022).
[17] Kalapala L. Devanuri J.K., Optimization of Fin Parameters to Reduce Entropy Generation and Melting Time of a Latent Heat Storage Unit, J. Sol. Energy Eng., 142(6): 61005 (2020).
[18] Ghosh D., Kumar P., Sharma S., Guha C., Ghose J., Numerical Investigation on Latent Heat Thermal Energy Storage in a Phase change Material Using a Heat Exchanger, Heat Transf., 50(5): 4289–4308 (2021).
[20] Arasu A.V., Mujumdar A.S., Numerical Study on Melting of Paraffin Wax with Al2O3 in a Square Enclosure, Int. Commun. Heat Mass Transf.,  39(1): 8–16 (2012).
[21] Babapoor A., Haghighi A.R., Jokar S.M., Ahmadi Mezjin M., The Performance Enhancement of Paraffin as a PCM During the Solidification Process: Utilization of Graphene and Metal Oxide Nanoparticles, Iran. J. Chem. Chem. Eng.(IJCCE), 41(1): 37–48 (2022).
[22] Ahmadi Mezjin M., Karimi G., Medi B., Babapoor A., Paar M., Passive Thermal Management of a Lithium-Ion Battery Using Carbon Fiber Loaded Phase Change Material: Comparison and Optimization, Iran. J. Chem. Chem. Eng. (IJCCE), 41(1): 310–327 (2022).
[24] Chow L.C., Zhong J.K., Beam J.E., Thermal Conductivity Enhancement for Phase Change Storage Media, Int. Commun. Heat Mass Transf., 23(1): 91–100 (1996).
[25] Valan A.A., Sasmito A.P., Mujumdar A.S., Numerical Performance Study of Paraffin Wax Dispersed with Alumina in a Concentric Pipe Latent Heat Storage System, Therm. Sci., 17(2): 419–430 (2013).
[26] Vajjha R. S., Das D.K., Namburu P.K., Numerical Study of Fluid Dynamic and Heat Transfer Performance of Al2O3 and CuO Nanofluids in the Flat Tubes of a Radiator, Int. J. Heat Fluid Flow31(4): 613–621 (2010).
[27] Vajjha R.S., Das D.K., Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations, Int. J. Heat Mass Transf., 52( 21–22): 4675–4682 (2009).
[28] Sheikholeslami M., Jafaryar M., Shafee A., Li Z., Simulation of Nanoparticles Application for Expediting Melting of PCM Inside a Finned Enclosure, Phys. A Stat. Mech. Its Appl., 523: 544–556 (2019).
[30] Qaiser R., Khan M.M., Khan L.A., Irfan M., Melting Performance Enhancement of PCM Based Thermal Energy Storage System Using Multiple Tubes and Modified Shell Designs, J. Energy Storage, 33: 102161 (2021).
[31] Nakhchi M.E., Esfahani J.A., Improving the Melting Performance of PCM Thermal Energy Storage with Novel Stepped Fins, J. Energy Storage, 30: 101424 (2020).
[32] Parmoor S., Sirousazar M., Kheiri F., Kokabi M., Polyethylene/Clay/Graphite Nanocomposites as Potential Materials for Preparation of Reinforced Conductive Natural Gas Transfer Pipes, Iran. J. Chem. Chem. Eng. (IJCCE),  39(2): 59–68 (2020).
[33] Nasiri M., Atabaki F., Ghaemi N., Seyedzadeh Z., Fabrication and Characterization of Proton Conductive Membranes Based on Poly (Methyl Methacrylate-Co-Maleic Anhydride), Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 43–57( 2020).