Structural Analysis and Mutational Assessment of the Photosystem II Chlorophyll-Binding Protein (CP47) in the Cyanobacterium Synechocystis sp. PCC 6803: Modeling and Simulation Study

Document Type : Research Article

Authors

1 Department of Biophysics, Faculty of Biological Sciences, Gorgan Branch, Islamic Azad University, Gorgan, I.R. IRAN

2 Department of Biophysics, Faculty of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, I.R. IRAN

3 Department of Physics, Varamin-Pishva Branch, Islamic Azad University, Varamin, I.R. IRAN

4 Department of Plant Biology, Faculty of Biological Sciences, Gorgan Branch, Islamic Azad University, Gorgan, I.R. IRAN

Abstract

CP47 is one of the essential components of photosystem II (PSII) in green plants, green algae, and cyanobacteria; which is involved in the light reactions of photosynthesis. Various studies have shown that the binding of the extrinsic protein of 33 kDa (PsbO) to the large extrinsic loop of CP47 (E loop) is an essential photoautotrophic activity of the PSII complex. Moreover, the deletion of the amino acids between Gly-351 and Thr-365 within loop E failed to assemble stable PSII centers. In this study, using computational methods, the effect of Phenylalanine (Phe) mutation at position 363 on Synechocystis sp. PCC 6803 CP47 was investigated and then the mutant model was compared with the native one. Because the experimental 3D structure of Synechocystis sp. PCC 6803 CP47 and PsbO proteins are not available in the Protein Data Bank (PDB), the 3D structure of these proteins was modeled by homology modeling. After refining and energy minimization, the quality of protein geometry was assessed by different criteria such as PROCHECK and ProSA. Then, structural analysis of mutant and native models was performed with Molecular Dynamic (MD) simulation and docking method. The analysis of results obtained from MD simulation shows that F363R mutation affects the flexibility of some regions and especially leads to an increase in mutation region and changes the conformation of CP47. In addition, the results of docking studies indicate that F363R mutation can decrease buried surface area (BSA) at the interface region and decrease the binding energy of CP47 and PsbO. These data reinforce our hypothesis that an increase of flexibility at the position of F363 in the large extrinsic loop of CP47 may be an important factor in reducing interaction between CP47 and PsbO extrinsic protein and then water oxidation. oxidation.

Keywords

Main Subjects


[1] Croce R., Amerongen H.V., Light-harvesting and Structural Organization of Photosystem II: From  Individual Complexes To Thylakoid Membrane, J. Photobiol. Photobiol. B: Biology., 104(1-2): 142-153 (2011).
[2] Blankenship R.E., “Molecular Mechanisms of Photosynthesis, Wiley Blackwell, United States, (2014).
[3] Knoppová J., Sobotka R., Tichy M, Yu J., Konik P., Halada P., Nixon PJ., Komenda.J., Discovery of a Chlorophyll Binding Protein Complex Involved in the Early Steps of Photosystem II Assembly in Synechocystis, Plant Cell., 26(3):1200-1212( 2014).
[4] Komenda J., Roman S., Chlorophyll-Binding Subunits of Photosystem I and II: Biosynthesis, Chlorophyll Incorporation and Assembly, Advances in Botanical Research., 91:195-223(2019).
[5] Bučinská L., Kiss É., Koník P., Knoppová .J, Komenda J., Sobotka R., The Ribosome-Bound Protein Pam68 Promotes Insertion of Chlorophyll into the CP47 Subunit of Photosystem II, Plant Physiol., 176(4):2931-2942(2018).
[6] Lubitz W., Chrysina M., Cox N., Water Oxidation in Photosystem II, Photosynth Res, 142(1):105-125(2019).
[7] Bondarava N., Beyer P., Krieger-Liszkay A., Function of the 23 kDa Extrinsic Protein of Photosystem II
as a Manganese Binding Protein and its Role in Photoactivation
, Biochim Biophys Acta., 1708(1):63-70 (2005).
[8] Popelkova H., Charles F.Y, PsbO, the Manganese-Stabilizing Protein: Analysis of the Structure–Function Relations that Provide Insights into its Role in Photosystem II, Journal of Photochemistry and Photobiology B: Biology., 104(1-2):179-190(2011).
[9] Nagao R., Suzuki T., Okumura A., Niikura A., Iwai M.,  Naoshi D., Tomo T., Ren Shen J., Ikeuchi M., Enami I., Topological Analysis of the Extrinsic PsbO, PsbP and PsbQ Proteins in a Green Algal PSII Complex by Cross-Linking with a Water-Soluble Carbodiimide, Plant and Cell Physiology, 51(5):718-727(2010).
[10] Roose L.J., Frankel K.L., Mummadisetti P.M., Bricker T.M., The Extrinsic  Proteins of Photosystem II: Update, Planta., 243(4):889-908(2016).
[11] Cindy P.E., Robert B., Jituo W.u., John W., Terry M.B., Site-Directed Mutagenesis of the CP 47 Protein of Photosystem II:  Alteration of Conserved Charged Residues in the Domain 364E−444R, Biochemistry., 35(13): 4046–4053 (1996).
[12]  Becker K., Cormann U.K.,  Nowaczyk M.M., Assembly of the Water-Oxidizing Complex in Photosystem II, J. Photochem. Photobiol. B., 104(1-2):204-11(2011).
[15] Stewart  A. A., Molecular Dynamics: Survey of Methods for Simulating the Activity of Proteins, Chem Rev., 106(5):1589–1615 (2006).
[16] Scott A.H.,  Ron O.D., Molecular Dynamics Simulation for All, Neuron., 99(6): 1129-1143 (2018).
[17] Cyril D., Rolf B., Alexandre M.J.J., HADDOCK: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information, J. Am. Chem. Soc., 125(7): 1731-1737 (2003).
[18] MacDougall I.J., Lewis P.J., Griffith R., Homology Modelling of RNA Polymerase and Associated Transcription Factors from Bacillus Subtilis, J. Mol. Graph. Model., 23(4):297-303 (2005).
[19] Sefidbakht Y., Ranaei S.O., Taheri F., Homology Modeling And Molecular Dynamics Study on Schwanniomyces Occidentalis Alpha-Amylase, J. Biomol. Struct. Dyn., 35(3):574-584 (2017).
[20] Vuister G.W , Fogh R.H., Hendrickx P.M.S., Doreleijers J.F., Gutmanas A., An Overview Of Tools For The Validation Of Protein NMR Structures, J. Biomol. NMR., 58(4):259-85(2014).
[22]  Sumathi K., Ananthalakshmi P., Roshan M.N.A.,  Sekar K., 3dSS: 3D Structural Superposition, Nucleic Acids Research., 34:128–132 (2006).
[23] Sakurai I., Shen  J.R., Leng J., Ohashi S., Kobayashi M., Wada H., Lipids in Oxygen-Evolving Photosystem II Complexes of Cyanobacteria and Higher Plants, J. Biochem., 140(2):201-209 (2006).
[24] Emilia L.W.u., Olof E., Sunhwan J.o., Danielle S., Min S.Y., Jeffery B.K., Göran W., Wonpil I., Molecular Dynamics and NMR Spectroscopy Studies of E. Coli Lipopolysaccharide Structure  and Dynamics, Biophys. J., 105(6): 1444–1455 (2013).
[25] Emilia L.W.u., Patrick J.F., Min S.Y., Göran W., Jeffery B.K., Karen G.F., Wonpil I., Ecoli Outer Membrane and Interactions with OmpLA, Biophys J., 106(11): 2493–2502 (2014).
[26] Jo S., Wu E.L., Stuhlsatz D., Klauda J.B., MacKerell  A.D Jr., Widmalm G.I.m. W., Lipopolysaccharide Membrane Building and Simulation, Methods Mol. Biol., 1273:391-406 (2015).
[27] Sunhwan J.o., Taehoon K., and Wonpil I., Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations, PLoS One., 2(9):1-9 (2007).
[29] Jo S., Kim T., Iyer V.G., Im W., CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM, J. Comput. Chem., 29(11):1859-65(2008).
[30] Van Eerden F.J., de Jong D.H., de Vries A.H., Wassenaar T.A., Marrink S.J., Characterization of Thylakoid Lipid Membranes From Cyanobacteria and Higher Plants by Molecular Dynamics Simulations, Biochim. Biophys. Acta, Biomembr., 1848(6):1319-1330 (2015).
[31] Brooks B.R., Brooks C.L., Mackerell A.D Jr., Nilsson L., Petrella R J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., Caflisch A., Caves L., Cui Q., Dinner AR., Feig M., Fischer S., Gao J., Hodoscek M., Kuczera K., CHARMM: the Biomolecular Simulation Program, Journal of Computational Chemistry, 30(10):1545–1614 (2009).
[32] Jeffery B.K., Richard M.V., Alfredo F., Joseph W.O.,  Update of the CHARMM all-Atom Additive Force Field for Lipids: Validation on Six Lipid Types, J. Phys. Chem. B., 114(23):7830–7843(2010).
[33] Rezazadeh Mofradnia S.,  Ashouri R., Abtahi N., Yazdian F., Rashedi H., Sheikhpour M.,  Ashrafi F.,  Production and Solubility of Ectoine: Biochemical and Molecular Dynamics Simulation Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 39(6):259-269(2020).     
[34] Ibeji C.U., Ujam O.T., Chukwuma Chime C., Akpomie K G., Anarado C.J.O., Odewole O.A.,  Dehydroacetic Acid-Phenylhydrazone as a Potential Inhibitor for Wild-Type HIV-1 Protease: Structural, DFT, Molecular Dynamics, 3D QSAR and ADMET Characteristics, Iran. J. Chem. Chem. Eng. (IJCCE), 40(1): 215-230(2021).
[35] Jumin L.X.,  Jason M.S., Min S.Y., Peter K.E.,  Justin A.L., Shuai W., Joshua B., Jong C.J., CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field, J. Chem. Theory Comput., 12(1):405–413 (2016).
[36] Elber R., Ruymgaart A.P., Hess B., SHAKE Parallelization, Eur. Phys. J. Spec. Top., 200(1):211-223(2011).
[37] Kaya H., Hardy D.J., Skeel R.D., Multilevel Summation For Periodic Electrostatics Using B-splines, J.Chem. Phys., 154(14):144105(2021).
[38] Azizian H., Bahrami H., Pasalar P., Amanlou M., Molecular Modeling of Helicobacter Pylori Arginase and the Inhibitor Coordination Interactions, J. Mol. Graph. Model.,  28(7): 626-35 (2010).
[39] Umamaheswari A., Pradhan D.,  Hemanthkumar M., Virtual Screening for Potential Inhibitors of Homology Modeled Leptospira Interrogans Murd Ligase, Journal of Chemical Biology., 3(4):175–187 (2010).
[40] Kumar A., Purohit R., Use of Long Term Molecular Dynamics Simulation in Predicting Cancer Associated SNPs, PLoS Computational Biology., 10(4): 1-14 (2014).
[41] Erijman A., Rosenthal E., Shifman J.M., How Structure Defines Affinity in Protein-Protein Interactions, PLoS One., 9(10): 1-10 (2014).