A New Hydrazide-Hydrazone Based Schiff Base: Synthesis, DFT Calculations, in Silico Pharmacokinetics and Toxicity, Inhibitory Activity Against Tau Aggregation and SARS-CoV-2 Mpro

Document Type : Research Article

Authors

1 Department of Chemistry, Faculty of Art and Sciences, Ondokuz Mayis University, Samsun, TURKEY

2 Department of Physics, Faculty of Art and Sciences, Ondokuz Mayis University, Samsun, TURKEY

Abstract

We report here a new imine compound (Schiff base) with a hydrazide-hydrazone moiety, N'-(5-nitro-2-(piperidin-1-yl)benzylidene)benzohydrazide. The present work deals with synthesis, spectral and structural characterization, in silico drug-likeness, target identification and molecular docking studies of this compound. In this study, structural characterization was performed using complementary spectroscopic techniques, including X-ray, FT-IR, 1H-NMR, and UV-Vis. Surface properties and electronic studies were investigated using the method DFT/B3LYP. Drug-likeness, physicochemical and pharmacokinetic (ADME) properties, toxicity evaluation, and biological target identification were fulfilled using some bioinformatics and cheminformatics web tools. Draggability studies indicated two biological targets for our compound: microtubule-associated protein tau and protease, and docking studies were performed on tau fibrils (5V5C and 3OVL) and Mpro (6LU7) of SARS-CoV-2 accordingly. 

Keywords

Main Subjects


[1] Hassan S., Abdullah M., Synthesis, Spectroscopic Study and Biological Activity of Some New Heterocyclic Compounds Derived from Sulfadiazine, ZANCO Journal of Pure and Applied Sciences,  31(6): 92-109 (2019).
[2] Hassan S.,  Abdullah M. Aziz D., Synthesis, in Vitro Antimicrobial Assay and Molecular Docking Studies of some New Symmetrical Bis-Schiff Bases and Their 2-Azetidinones, Scientific Journal of Pure and Applied Sciences,  33: 34-50 (2021).
[3] Hussain Z.,  Yousif E.,  Ahmed A. Altaie A., Synthesis and Characterization of Schiff's Bases of Sulfamethoxazole, Organic and Medicinal Chemistry Letters, 4(1): 1-1 (2014).
[4] Menati S.,  Azadbakht R.,  Rudbari H.A. Bruno G., Synthesis and Characterization of Four New Azo-Schiff Base and Their Nickel(II) Complexes, Polyhedron,  205: 115296 (2021).
[5] More M.S.,  Joshi P.G.,  Mishra Y.K., Khanna P.K., Metal Complexes Driven from Schiff Bases and Semicarbazones for Biomedical and Allied Applications: A Review, Materials Today Chemistry14: 100195 (2019).
[8] Li Z.,  Jiang Y.,  Guengerich F.P.,  Ma L.,  Li S., Zhang W., Engineering Cytochrome P450 Enzyme Systems for Biomedical and Biotechnological Applications, Journal of Biological Chemistry, 295(3): 833-849 (2020).
[10] Boulebd H.,  Zine Y.,  Khodja I.A.,  Mermer A.,  Demir A., Debache A., Synthesis and Radical Scavenging Activity of New Phenolic Hydrazone/Hydrazide Derivatives: Experimental and Theoretical Studies, Journal of Molecular Structure, 1249: 131546 (2022).
[12] Popiołek Ł., Hydrazide–hydrazones as Potential Antimicrobial Agents: Overview of the Literature Since 2010, Medicinal Chemistry Research,  26(2): 287-301 (2017).
[13] Yele V.,  Mohammed A.A., Wadhwani, A.D., Synthesis and Evaluation of Aryl/Heteroaryl Benzohydrazide and Phenylacetamide Derivatives as Broad-Spectrum Antibacterial Agents, Chemistry Select,  5(34): 10581-10587 (2020).
[14] Lalavani N.H.,  Gandhi H.R.,  Bhensdadia, K.A.,  Patel R.K. Baluja S.H., Synthesis Pharmacokinetic and Molecular Docking studies of New Benzohydrazide Derivatives Possessing Anti-Tubercular Activity Against Mycobacterium Tuberculosis H37Rv, Journal of Molecular Structure, 1250: 131884 (2022).
[15] Farahani M.,  Niknam Z.,  Mohammadi Amirabad L.,  Amiri-Dashatan N.,  Koushki M.,  Nemati M.,  Danesh Pouya, F.,  Rezaei-Tavirani M.,  Rasmi Y., Tayebi L., Molecular Pathways Involved in COVID-19 and Potential Pathway-Based Therapeutic Targets, Biomedicine & Pharmacotherapy, 145: 112420 (2022).
[16] Bhat A.,  Dongre R.,  Patil R.,  Abdullah M., Hassan S., Inventum Biologicum SARS-CoV-2 and Diabetes Mellitus (DM): A Comprehensive Review, International Journal of Biological Research,  2: 87-93 (2022).
[17] Zhou Y.-W.,  Xie Y.,  Tang L.-S.,  Pu D.,  Zhu Y.-J.,  Liu J.-Y. Ma X.-L., Therapeutic Targets and Interventional Strategies in COVID-19: Mechanisms and Clinical Studies, Signal Transduction and Targeted Therapy,  6(1): 317 (2021).
[18] Qia, Z.,  Wei N.,  Jin L.,  Zhang H.,  Luo J.,  Zhang Y. Wang K., The Mpro Structure-Based Modifications of Ebselen Derivatives for Improved Antiviral Activity Against SARS-CoV-2 Virus, Bioorganic Chemistry, 117: 105455 (2021).
[19] Jena N.R., Drug targets, Mechanisms of Drug Action, and Therapeutics Against SARS-CoV-2, Chemical Physics Impact2: 100011 (2021).
[20] Oubahmane M.,  Hdoufane I.,  Bjij I.,  Jerves C.,  Villemin D. Cherqaoui D., COVID-19: In silico Identification of Potent Α-Ketoamide Inhibitors Targeting the Main Protease of the SARS-CoV-2, Journal of Molecular Structure, 1244: 130897 (2021).
[21] Sheldrick G.M., SHELXT - Integrated Space-Group and Crystal-Structure Determination, Acta Crystallographica Section A: Foundations of Crystallography, 71(1): 3-8 (2015).
[22] Sheldrick G.M., Crystal Structure Refinement with SHELXL, Acta Crystallographica Section C: Structural Chemistry, 71(1): 3-8 (2015).
[23] Westrip S.P., PublCIF: Software for Editing, Validating and Formatting Crystallographic Information Files, Journal of Applied Crystallography, 43(4): 920-925 (2010).
[24] Frisch M.,  Trucks G.,  Schlegel H.B.,  Scuseria G.E.,  Robb M.A.,  Cheeseman J.R.,  Scalmani G.,  Barone V.,  Mennucci B. Petersson G., Gaussian 09, Revision d. 01, Gaussian, Inc., Wallingford CT, 201 (2009).
[25] Parr R.G., “Density Functional Theory of Atoms and Molecules”, Springer, (1980).
[26] Becke A.D., Density‐Functional Thermochemistry. III. The Role of Exact Exchange, The Journal of Chemical Physics, 98(7): 5648-5652 (1993).
[27] Macrae C.F.,  Edgington P.R.,  McCabe P.,  Pidcock E.,  Shields G.P.,  Taylor R.,  Towler M., Van De Streek J., Mercury: Visualization and Analysis of Crystal Structures, Journal of Applied Crystallography, 39(3): 453-457 (2006).
[28] Morris G.M.,  Huey R.,  Lindstrom W.,  Sanner M.F.,  Belew R.K.,  Goodsell D.S., Olson A.J., AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, Journal of Computational Chemistry, 30(16): 2785-2791 (2009).
[29] Berman H.M.,  Westbrook J.,  Feng Z.,  Gilliland G.,  Bhat T.N.,  Weissig H.,  Shindyalov I.N. Bourne P.E., The Protein Data Bank, Nucleic Acids Research, 28(1): 235-242 (2000).
[30] Salentin S.,  Schreiber S.,  Haupt V.J.,  Adasme M.F. Schroeder M., PLIP: Fully Automated Protein–Ligand interaction Profiler, Nucleic Acids Research,  43(W1): W443-W447 (2015).
[31] Peón A.,  Li H.,  Ghislat G., Leung K.S.,  Wong M.H.,  Lu G., Ballester P.J., MolTarPred: A Web Tool for Comprehensive Target Prediction with Reliability Estimation, Chem. Biol. Drug Des., 94(1): 1390-1401 (2019).
[32] Daina A.,  Michielin O. Zoete V., Swiss ADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules, Scientific Reports, 7(1): 42717 (2017).
[33] Xiong G.,  Wu Z.,  Yi J.,  Fu L.,  Yang Z.,  Hsieh C.,  Yin M.,  Zeng X.,  Wu C.,  Lu A.,  Chen X.,  Hou T. Cao D., ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties, Nucleic Acids Research49(W1): p. W5-W14 (2021).
[35] Banerjee P.,  Eckert A.O.,  Schrey A.K. Preissner R., ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals, Nucleic Acids Research, 46(W1): W257-W263 (2018).
[36] Banerjee P.,  Dunkel M.,  Kemmler E. Preissner R., SuperCYPsPred-a Web Server for the Prediction of Cytochrome Activity, Nucleic Acids Res,  48(W1): W580-w585 (2020).
[37] Daina A., Zoete V., A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules, Chem. Med. Chem., 11(11): p. 1117-1121 (2016).
[38] de Freitas L.V.,  Da Silva C.C.P.,  Ellena J.,  Costa L.A.S., Rey N.A., Structural and Vibrational Study of 8-Hydroxyquinoline-2-Carboxaldehyde Isonicotinoyl Hydrazone – A Potential Metal–Protein Attenuating Compound (MPAC) for the Treatment of Alzheimer’s Disease, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116: p. 41-48 (2013).
[39] Szklarzewicz J.,  Jurowska A.,  Matoga D.,  Kruczała K.,  Kazek G.,  Mordyl B.,  Sapa J. Papież M., Synthesis, Coordination Properties and Biological Activity of Vanadium Complexes with Hydrazone Schiff Base Ligands, Polyhedron,  185: 114589 (2020).
[41] Jassem A.M.,  Hassan Q.M.A.,  Almashal F.A.,  Sultan H.A.,  Dhumad A.M.,  Emshary C.A., Tuma Albaaj L.T., Spectroscopic Study, Theoretical Calculations, and Optical Nonlinear Properties of Amino Acid (Glycine)-4-Nitro Benzaldeyhyde-Derived Schiff Base, Optical Materials, 122: 111750 (2021).
[42] Shankar M.,  Dennis Raj A.,  Jeeva M.,  Purusothaman R.,  Vimalan M., Vetha Potheher I., Synthesis, Crystal Growth, Thermal and Laser Damage Threshold Properties of New Schiff Base NLO Material 4-Nitro-Benzoic Acid (3-Ethoxy-2-Hydroxy-Benzylidene)-Hydrazide, Materials Letters, 232: p. 113-117 (2018).
[44] Warad I.,  Suboh H.,  Al-Zaqri N.,  Alsalme A.,  Alharthi F.A.,  Aljohani M.M., Zarrouk A., Synthesis and Physicochemical, DFT, Thermal and DNA-Binding Analysis of a New Pentadentate N3S2 Schiff Base Ligand and its [CuN3S2]2+ Complexes,
RSC Advances,
10(37): 21806-21821 (2020).
[45] Raghi K.R.,  Sherin D.R.,  Saumya M.J.,  Arun P.S.,  Sobha V.N., Manojkumar T.K., Computational Study of Molecular Electrostatic Potential, Docking and Dynamics Simulations of Gallic Acid Derivatives as ABL Inhibitors, Computational Biology and Chemistry, 74: 239-246 (2018).
[46] Sivakumar C.,  Balachandran V.,  Narayana B.,  Salian V.V.,  Revathi B.,  Shanmugapriya N., Vanasundari K., Molecular Spectroscopic Assembly of 3-(4-Chlorophenyl)-5-[4-(Propane-2-yl) Phenyl] 4, 5-Dihydro-1H Pyrazole-1-Carbothioamide, Antimicrobial Potential and Molecular Docking Analysis, Journal of Molecular Structure, 1210: 128005 (2020).
[47] Mumit M.A.,  Pal T.K.,  Alam M.A.,  Islam M.A.-A.-A.-A.,  Paul S., Sheikh M.C., DFT Studies on Vibrational and Electronic Spectra, HOMO–LUMO, MEP, HOMA, NBO and Molecular Docking Analysis of Benzyl-3-N-(2,4,5-Trimethoxyphenylmethylene) Hydrazinecarbodithioate, Journal of Molecular Structure, 1220: 128715 (2020).
[48] Mohammed K.,  Mohammed A.A.K.,  Abdel Hakiem A.F., Mahfouz R.M., Computational Evaluation on the Molecular Conformation, Vibrational Spectroscopy, NBO Analysis and Molecular Docking of Betaxolol and Betaxolol-Chlorthalidone Cocrystals, Journal of Molecular Structure, 1209: 127744 (2020).
[51] Suresh S.,  Gunasekaran S., Srinivasan S., Vibrational Spectra (FT-IR, FT-Raman), Frontier Molecular Orbital, First Hyperpolarizability, NBO Analysis and Thermodynamics Properties of Piroxicam by HF and DFT Methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138: p. 447-459 (2015).
[53] Khalid M.,  Ali A.,  Haq S., Tahir M.N., Iqbal J., Braga, A.A.C.,  Ashfaq M., Akhtar S.U.H., O-4-Acetylamino-Benzenesulfonylated Pyrimidine Derivatives: Synthesis, SC-XRD, DFT Analysis and Electronic Behaviour Investigation, Journal of Molecular Structure, 1224: p. 129308 (2021).
[56] Soliman S.M.,  Hagar M.,  Ibid F., El Ashry E.S.H., Experimental and Theoretical Spectroscopic Studies, HOMO–LUMO, NBO Analyses and Thione–Thiol Tautomerism of a New Hybrid of 1,3,4-Oxadiazole-Thione with Quinazolin-4-One, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145: 270-279 (2015).
[57] Fan J., de Lannoy I.A.M., Pharmacokinetics, Biochemical Pharmacology,  87(1): 93-120 (2014).
[58] McDonnell A.M., Dang C.H., Basic Review of the Cytochrome p450 System, Journal of the Advanced Practitioner in Oncology, 4(4): 263-268 (2013).
[59] Olsen L.,  Oostenbrink C., Jørgensen F.S., Prediction of Cytochrome P450 Mediated Metabolism, Advanced Drug Delivery Reviews, 86: 61-71 (2015).
[60] Zhao L.,  Sun N.,  Tian L.,  Zhao S.,  Sun B.,  Sun Y., Zhao D., Strategies for the Development of Highly Selective Cytochrome P450 Inhibitors: Several CYP Targets in Current Research, Bioorganic & Medicinal Chemistry Letters,  29(16): 2016-2024 (2019).
[61] Banerjee P.,  Dunkel M.,  Kemmler E., Preissner R., SuperCYPsPred—A Web Server for the Prediction of Cytochrome Activity, Nucleic Acids Research48(W1): W580-W585 (2020).
[62] David S., Hamilton J.P., Drug-Induced Liver Injury, US Gastroenterol Hepatol Rev,  6: p. 73-80 (2010).
[64] Benigni R., Bossa C., Mechanisms of Chemical Carcinogenicity and Mutagenicity: A Review with Implications for Predictive Toxicology, Chemical Reviews111(4): 2507-2536 (2011).
[65] Richard A.M.,  Huang R.,  Waidyanatha S.,  Shinn P.,  Collins B.J.,  Thillainadarajah I.,  Grulke C.M.,  Williams A.J.,  Lougee R.R.,  Judson R.S.,  Houck K.A.,  Shobair M.,  Yang C.,  Rathman J.F.,  Yasgar A.,  Fitzpatrick S.C.,  Simeonov A.,  Thomas R.S.,  Crofton K.M.,  Paules R.S.,  Bucher J.R.,  Austin C.P.,  Kavlock R.J., Tice R.R., The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology, Chemical Research in Toxicology, 34(2): 189-216 (2021).
[66] Huang R.,  Xia M.,  Nguyen D.-T.,  Zhao T.,  Sakamuru S.,  Zhao J.,  Shahane S.A.,  Rossoshek A., Simeonov A., Tox21Challenge to Build Predictive Models of Nuclear Receptor and Stress Response Pathways as Mediated by Exposure to Environmental Chemicals and Drugs, Frontiers in Environmental Science, 3(85) (2016).