Effect Nano of Zeolite 4A Loading on Polymer Membrane to Increase Permeability and Selectivity CO2/N2

Document Type : Research Article

Authors

Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, I.R. IRAN

Abstract

The separation of CO2 gas is very important to meet environmental standards, this research aims to prepare a membrane that improves the selectivity of CO2 over N2 gas. Polymer (polyether-block amide) has properties that absorb CO2 well. Nano zeolite 4A has tiny pores proportional to the kinetic diameter of CO2. This mineral particle can act as a molecular sieve in the membrane and improve thermal and mechanical stability. By these two materials, Pebax/4A membrane was prepared. The structure of the membranes was evaluated by FESEM, BET, FT-IR, and mechanical strength analyses, and the permeability, selectivity, diffusion coefficient, and solubility coefficient of carbon dioxide were calculated in them. Finally, it was found that by adding 10% by weight of 4A, the selectivity of nanocomposite improved by %28 ​​compared to pure polymer.

Keywords

Main Subjects


[1] Brunettia A.,Scura F., Barbieria G., Driolia E., Membrane Technologies for Co2 Separation, Journal of Membrane Science,  359(1-2): 115-125  (2010).
[2] Ehsani A., Pakizeh M., Synthesis, Characterization and Gas Permeation Study of Zif-11/Pebax® 2533 Mixed Matrix Membranes, Journal of the Taiwan Institute of Chemical Engineers, 66: 414-423 (2016).
[4] Zanetti M., Camino G., Thomann R., Mülhaupt R., Synthesis and Thermal Behaviour of Layered Silicate–Eva Nanocomposites, Polymer, 42(10): 4501-4507 (2001).
[5] Budd P.M., McKeown N.B., Fritsch D., Yampolskii Y., Shantarovich V., Gas Permeation Parameters and Other Physicochemical Properties of a Polymer of Intrinsic Microporosity (Pim-1), Journal of the Taiwan Institute of Chemical Engineers, 29-42 (2010).
[6] Omrani H., Naser I., Rafiezadeh M., Preparation and Characterization of a Novel Polysulfone (Ps) Mixed Matrix Membrane Modified with a Sapo-34 Nanofiller for CO2/CH4 Gaseous Mixture Separation, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(3): 902-912 (2022).
[7] Suhas D.P., Aminabhavi T.M., Raghu A.V., Para-Toluene Sulfonic Acid Treated Clay Loaded Sodium Alginate Membranes for Enhanced Pervaporative Dehydration of Isopropanol, Applied Clay Science, 101:419-429 (2014).
[8] Jyothi M., Reddy, K. R., Soontarapa, K., Naveen, S., Raghu, A. V., Kulkarni, R. V., . . . Aminabhavi, T. M., Membranes for Dehydration of Alcohols via Pervaporation, Journal of Environmental Management, 242: 415-429 (2019).
[10] Ahmad J., Hägg M.-B., Preparation and Characterization of Polyvinyl Acetate/Zeolite 4a Mixed Matrix Membrane for Gas Separation, Journal of Membrane Science, 427: 73-84 (2013).
[11] Dehaghani A.H.S., Rashidian S., Pirouzfar V., Su C.-H., The Novel Composite Membranes Containing Chloride and Acid Functionalized Multiwall Carbon Nanotube Fillers for Gas Separation, Colloid and Polymer Science, 299(12): 1933-1944 (2021).
[12] Raghu A.V., Gadaginamath G.S., Mathew N.T., Halligudi S.B., Aminabhavi T.M., Synthesis and Characterization of Novel Polyurethanes Based on 4,4′-[1,4-Phenylenedi-Diazene-2,1-Diyl] Bis(2-Carboxyphenol) and 4,4′- [1,4-Phenylenedi-Diazene-2,1-Diyl] Bis (2-Chlorophenol) Hard Segments, Reactive and Functional Polymers,  67(6): 503-514  (2007).
[13] Azizi N., Isanejad M., Mohammadi T., Behbahani R.M., Effect of Tio2 Loading on the Morphology and CO2/CH4 Separation Performance of Pebax-Based Membranes, Frontiers of Chemical Science and Engineering, 13(3): 517-530 (2019).
[14] Hosseinzadeh Beiragh H., Omidkhah M., Abedini R., Khosrav, T., Pakseresht S., Synthesis and Characterization of Poly (Ether-Block-Amide) Mixed Matrix Membranes Incorporated by Nanoporous Zsm-5 Particles for CO2/CH4 Separation, Asia-Pacific Journal of Chemical Engineering, 11(4): 522-532 (2016).
[15] Jamshidi M., Pirouzfar V., Abedini R., Pedram M.Z., The Influence of Nanoparticles on Gas Transport Properties of Mixed Matrix Membranes: An Experimental Investigation and Modeling, Korean Journal of Chemical Engineering, 34(3): 829-843 (2017).
[16] Fraga S.C., Monteleone M., Lanč M., Esposito E., Fuoco A., Giorno L., . . . Jansen J.C., A Novel Time Lag Method for the Analysis of Mixed Gas Diffusion in Polymeric Membranes by on-Line Mass Spectrometry: Method Development and Validation, Journal of Membrane Science,  561: 39-58 (2018).
[17] Myneni V.R., Kanidarapu N.R., Shaik F., Vangalapati M., Response Surface Modeling of the Removal of Methyl Orange Dye from an Aqueous Solution Using Magnesium Oxide Nanoparticles Immobilized on Chitosan, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(5): 1602-1618 (2022).
[18] Sobhanipour A.R., Khodabakhshi M.R., Karimian R., Alizadeh M., Removal of Nitrate from Water Using TiO2/ PVDF Membrane Photobioreactor, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(1): 167-183 (2021).
[19] Khoramzadeh E., Mofarahi M., Lee C.-H., Equilibrium Adsorption Study of CO2 and N2 on Synthesized Zeolites 13x, 4a, 5a, and Beta, Journal of Chemical & Engineering Data, 64(12): 5648-5664 (2019).
[20] Surya Murali R., Ismail A.F., Rahman M.A., Sridhar S., Mixed Matrix Membranes of Pebax-1657 Loaded with 4a Zeolite for Gaseous Separations, Separation and Purification Technology, 129: 1-8 (2014).
[21] Suhas D.P., Aminabhavi T.M., Jeong H.M., Raghu A.V., Hydrogen Peroxide Treated Graphene as an Effective Nanosheet Filler for Separation Application, RSC Advances, 5(122): 100984-100995 (2015).
[22] Zou W., Bai H., Zhao L., Li K., Han R., Characterization and Properties of Zeolite as Adsorbent for Removal of Uranium(Vi) from Solution in Fixed Bed Column, Journal of Radioanalytical and Nuclear Chemistry,  288(3): 779-788 (2011).
[23] Habib N., Shamair Z., Tara N., Nizami A.-S., Akhtar F. H., Ahmad N. M., . . . Khan A.L., Development of Highly Permeable and Selective Mixed Matrix Membranes Based on Pebax®1657 and Nott-300 for CO2 Capture, Separation and Purification Technology, 234: 101-116 (2020).
[24] Asghari M., Mosadegh M., Harami H. R., Supported Peba-Zeolite 13x Nano-Composite Membranes for Gas Separation: Preparation, Characterization and Molecular Dynamics Simulation, Chemical Engineering Science, 187: 67-78 (2018).
 [25] Jomekian A., Behbahani R. M., Mohammadi T., Kargari A., CO2/CH4 Separation by High Performance Co-Casted Zif-8/Pebax 1657/Pes Mixed Matrix Membrane, Journal of Natural Gas Science and Engineering, 31: 562-574 (2016).
[26] Karamouz, F., Maghsoudi, H. and Yegani, R., Synthesis of High‐Performance Pebax®‐1074/Dd3r Mixed‐Matrix Membranes for CO2/CH4 Separation, Chemical Engineering & Technology, 41(9): 1767-1775 (2018).
[27] Khoshkharam A., Azizi N., Behbahani, R. M., Ghayyem M.A., Separation of CO2 from CH4 Using a Synthesized Pebax-1657/Zif-7 Mixed Matrix Membrane, Petroleum Science and Technology, 35(7): 667-673 (2017).
[28] Khosravi T., Omidkhah M., Kaliaguine S., Rodrigue D., Amine‐Functionalized Cubtc/Poly (Ether‐B‐Amide‐6)(Pebax® Mh 1657) Mixed Matrix Membranes for CO2/CH4 Separation, The Canadian Journal of Chemical Engineering,  95(10): 2024-2033 (2017).
[29] Li T., Pan Y., Peinemann K.-V., Lai Z., Carbon Dioxide Selective Mixed Matrix Composite Membrane Containing Zif-7 Nano-Fillers, Journal of Membrane Science, 425: 235-242 (2013).
[30] Zheng Y., Wu Y., Zhang B., Wang Z., Preparation and Characterization of CO2‐Selective Pebax/Nay Mixed Matrix Membranes, Journal of Applied Polymer Science, 137(9): 48398 (2020).
[31] Zarshenas K., Raisi A., Aroujalian A., Mixed Matrix Membrane of Nano-Zeolite Nax/Poly (Ether-Block-Amide) for Gas Separation Applications, Journal of Membrane Science, 510: 270-283 (2016).
[32] Nafisi, V., Hägg M.-B., Development of Dual Layer of Zif-8/Pebax-2533 Mixed Matrix Membrane for CO2 Capture, Journal of Membrane Science, 459: 244-255 (2014).
[33] Robeson L.M., The Upper Bound Revisited, Journal of Membrane Science, 320(1-2): 390-400 (2008).
[34] Rahman M.M., Shishatskiy S., Abetz C., Georgopanos P., Neumann S., Khan M.M., . . . Abetz V., Influence of Temperature Upon Properties of Tailor-Made Pebax® MH 1657 Nanocomposite Membranes for Post-Combustion CO2 Capture, Journal of Membrane Science, 469: 344-354 (2014).