Impact of Post-Processing Technologies in Additive Manufacturing for Aerospace Applications – A Review

Document Type : Review Article


1 Department of Chemistry, Geethanjali College of Engineering and Technology, Cheeryal, Hyderabad, Telangana, INDIA

2 Department of Materials Science and Engineering, Ajou University, Suwon-16499, SOUTH KOREA

3 Department of Physics, OP Jindal University, Raigarh, Chhattisgarh-496109, INDIA

4 Department of Chemistry, CMR Institute of Technology, Bengaluru, Karnataka 560037, INDIA


Modern aircraft engine components with thin-walled structures and complex shapes pose enough difficulties in the processing of materials which compel the aerospace industry to adopt the use of layered Additive Manufacturing (AM) technology. The aerospace industry is looking toward more durable, smaller, and lightweight components. However, AM technology suffers certain obstacles in the mass production of aircraft components due to critical issues such as part anisotropy, poor mechanical properties, and inadequate surface quality. Therefore, various surface modification and post-processing methods have been proposed to improve the surface characteristics of AM-manufactured parts. In this review, we have overviewed the historical developments, various post-fabrication methods, and applications concerning different metal AM processes. Several kinds of AM and their comparison for aerospace applications, their post-processing technologies, and their integration with AM processes are discussed in this review towards the possibility of future advancement in this field.


Main Subjects

[2] Sharma A., Oh M.C., Kim J.T., Srivastava A.K., Ahn B., Investigation of Electrochemical Corrosion Behavior of Additive Manufactured Ti–6Al–4V Alloy For Medical Implants In Different Electrolytes, J. Alloy. Compd., 830: 154620 (2020).
[3] Gopinath S., Devan P.K., Sabarish V., Sabharish Babu B.V., Sakthivel S., Vignesh P., Effect of Spray Characteristics Influences Combustion in DI Diesel Engine – A Review, Mater. Today: Proc., 33: 52-65 (2020).
[4] Kumar S., Goel S., Sharma A., Pandey C., Direct Energy Deposition, “Advances in Additive Manufacturing Processes”, 184-200 (2021).
[5] Han D., Yang H., Kong M.S., Lee C., Sharma A., Ahn B., High Precision Electrolytic Polishing of Ni–Ti Shape Memory Alloy for Biomedical Vascular Stents, Mater. Express, 10(8): 1249-1259 (2020).
[6] Bibin C., Senthil Kumar S., Aravindhan N., Gopinath S., Sheeja R., Ramachandran M., Flow Analysis of Secondary air Injection in Conical Rocket Nozzle, AIP Conf. Proc., 2393: 020048 (2022).
[7] Gautam A., Komal P., Gautam P., Sharma A., Verma N.K., Jung J.P., Recent Trends in Noble Metal Nanoparticles for Colorimetric Chemical Sensing and Micro-Electronic Packaging Applications, Metals, 11(2): 329 (2021).
[8] Devan P.K., Gopinath S., Rajesh K., Madhu S., Improving the Characteristics of Engine Oil Using Nanofluid as Coolant in Combat Vehicles, Mater Today: Proc., 22: 1130-1134 (2020).
[9] Sumida K., Rogow D.L., Mason J.A., McDonald T.M., Bloch E.D., Herm Z.R., Bae T.H., Long J.R., Carbon Dioxide Capture in Metal–Organic Frameworks, Chem. Rev., 112: 724-781 (2012).
[10] Granite E.J., Pennline H.W., Photochemical Removal of Mercury from Flue Gas, Ind. Eng. Chem. Res., 41: 5470-5476 (2002).
[11] Zhang J., Chaudhari A., Wang H., Surface Quality and Material Removal in Magnetic Abrasive Finishing of Selective Laser Melted 316L Stainless Steel, J. Manuf. Process. 45: 710–719 (2019).
[12] Sharma A., High Entropy Alloy Coatings and Technology, Coatings 11(4): 372 (2021).
[13] The Business Research Company, “Aerospace Global Market Report 2021: COVID 19 Impact and Recovery to 2030”, (2021).
[14] Wohlers, Wohlers Report, "3D Printing and Additive Manufacturing State of the Industry", Annual Worldwide Progress Report, Wohlers Associates: Fort Collins, Co., (2017).
[15] Market Research Future, Global Aerospace Additive Manufacturing Market Research Report”, Forecast 2016-2021 (2019).
[16] Bhavar V., Kattire P., Patil V., Khot S., Gujar K., Singh R., “A Review on Powder Bed Fusion Technology of Metal Additive Manufacturing”, International Conference and Exhibition on Additive Manufacturing Technologies-AM (2014), September 1 &2 (2014), Banglore, India.
[17] Ding D., Pan Z., Cuiuri D., Li H., Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests. Int. J. Adv. Manuf. Technol., 81(1–4): 465–481 (2015).
[19] Ruban W., Vijayakumar V., Dhanabal P., Tridhar T., Effective Process Parameters In Selective Laser Sintering Effective Process Parameters in Selective Laser Sintering, Int. J. Rapid Manuf., 4(2–4):148–164 (2014).
[20] Vayre B., Vignat F., Villeneuve F., Metallic Additive Manufacturing: State-Of-The Art Review and Prospects. Mechanics & Industry, 13(2): 89–96 (2012).
[21] Baumers M., Dickens P., Tuck C., Hague R., The Cost of Additive Manufacturing: Machine Productivity, Economies of Scale and Technology-Push, Technological Forecasting and Social Change, 102: 193–201 (2016).
[22] Ding D., Z., Cuiuri D., Li H., A Multi-Bead Overlapping Model for Robotic Wire and Arc Additive Manufacturing (WAAM), Robotics and Computer-Integrated Manufacturing, 31:101–110 (2015).
[23] Murr L.E., Martinez E., Amato K.N., Gaytan S.M., Hernandez J., Ramirez D.A., Shindo P.W., Medina F., Wicker R.B., Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science. Journal of Materials Research and Technology, 1(1): 42–54 (2012).
[24] Dutta B., Froes F.H., The Additive Manufacturing (AM) of Titanium Alloys. Metal Powder Report, 72(2): 96–106 (2017).
[26] Frazier W.E., Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform., 3(6):1917–1928 (2013).
[27] Mahamood R.M., Akinlabi E.T., Shukla M., Pityana S., "Laser Metal Deposition of Ti6Al4V: A Study on the Effect Oflaser Power on Microstructure and Microhardness. International Multi Conference of Engineers and Computer Scientists, II, 23(6), 1917–1928 (2013).
[28] Ríos S., Colegrove P.A., Martina F., Williams S.W., Analytical Process Model for Wire + Arc Additive Manufacturing. Additive Manuf., 21: 651–657 (2018).
[29] Williams S., “Large Scale Metal Wire + Arc Additive Manufacturing of Structural Engineering Parts”, 69th IIW Annual Assembly and International Conference, Melbourne, 10-15 July (2016).
[30] Williams, S.W., Martina F., Addison A.C., Ding J., Pardal G., Colegrove P., Wire + Arc Additive Manufacturing. Mater. Sci. Technol., 32(7): 641–647 (2016).
[31] Herzog D., Seyda V., Wycisk E., Emmelmann C., Additive Manufacturing of Metals, Acta Mater., 117: 371–392 (2016).
[32] Rambabu P., Eswara Prasad N., Kutumbarao V.V., Wanhill R.J.H., Aluminium Alloys for Aerospace Applications, “Aerospace Materials and Materials Technologies”,
Prasad N., Wanhill R., Ed., Springer, Singapore, (2017).
[33] Peters M., Kumpfert J., Ward C.H., Leyens C., Titanium Alloys for Aerospace Applications, Adv. Eng. Mater., 5 (6): 419–427 (2003).
[34] Williams J.C., Boyer R.R., Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components, Metals, 10 (6):705 (2020).
[35] Kellner T., “This Electron Gun Builds Jet Engines”, GE Aviation., General Electric (2014).
[36] Adeyemi A., Akinlabi E.T., Mahamood R.M., Powder Bed Based Laser Additive Manufacturing Process of Stainless Steel: A Review, Mater., Today: Proc. 5(9):18510–18517 (2018).
[37] Sharma A., Kumar S., Duriagina Z., "Engineering Steels and High Entropy-Alloys", InTechOpen (2020).
[38] Angrish A., Nagar S., "A Critical Analysis of Additive Manufacturing Technologies for Aerospace Applications", In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014.
[39] Alghamdi S.S., John S., Choudhary N.R., Dutta N.K., Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges, Polymers,13: 753 (2021).
[40] Langnau L., “Better Materials for High Temperature SLS” (2011).
[42] Ortiz-Acosta D., Moore T., Functional 3D Printed Polymeric Materials, in “Functional Materials”; Sahu, D.R., Ed.; IntechOpen: London, UK (2018).
[43] Joshi M., Chatterjee U., Polymer Nanocomposite:  An advanced Material for Aerospace Applications. In “Advanced Composite Materials for Aerospace Engineering”, Elsevier Ltd: Cambridge, UK, (2016).
[44] Njuguna B.J., Pielichowski K., Polymer Nanocomposites for Aerospace Applications: Properties. Adv. Eng. Mater., 5: 769–778 (2003).
[45] Kausar A., Rafique I., Muhammad B., Aerospace Application of Polymer Nanocomposite with Carbon Nanotube, Graphite, Graphene Oxide, and Nanoclay. Polym. Plast. Technol. Eng. 56: 1438–1456 (2017).
[46] Singh R.S., Li D., Xiong Q., Santoso I., Yu X., Chen W., Rusydi A., Wee A.T.S., Anomalous Photoresponse in the Deep-Ultraviolet due to Resonant Excitonic Effects in Oxygen Plasma Treated Few-Layer Graphene, Carbon, 106: 330-335 (2016).
[47] Muthukumar C., Krishnasamy S., Thiagamani S.M.K., Jeyaguru S., Siengchin S., Nagarajan R., Polymers in Aerospace Applications, in “Reference Module in Materials Science and Materials Engineering”, Elsevier UK (2021).
[48] Soundararajana G., Aravindhan, N., Pranith Kumar J., Pragadeeswaran M., Santhosh Kumar K., Sarath Kumar M., Comparative Analysis and Testing of Impact Attenuator, AIP Conf. Proc.2393: 020185 (2022).
[49] Brien M.O., Alues A.L.V., “Existing Standards as the Framework to Qualify Additive Manufacturing of Metals”. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March (2018).
[50] Mies D., Marsden W., Warde S., Overview of Additive Manufacturing Informatics: A Digital Thread, Integr. Mater. Manuf. Innov. 5:114–142 (2016).
[51] Uriondo A., Esperon-Miguez M., Perinpanayagam S., The Present and Future of Additive Manufacturing in the Aerospace Sector: A Review of Important Aspects. Part G, J. Aerosp. Eng. 229: 2132–2147 (2015).
[52] George C., Marshall Space Flight Center, “Standard for Additively Manufactured Spaceflight Hardware by Laser Powder Bed Fusion in Metals”, NASA Marshall Space Flight Center: Huntsville, AL, USA (2017).
[54] Waller D., Polizzi A., Iten J., “Feasibility Study of Additively Manufactured Al-6061 RAM2 Parts for Aerospace Applications”, AIAA SciTech 2019 Forum 7-11 January 2019 San Diego, California(2019).
[55] Katsarelis C., Gradl P., Protz C., Jones Z., “Additive Manufacturing of NASA HR-1 Material for Liquid Rocket Engine Component Applications”, JANNAF, (2019).
[56] Najmon J.C., Raeisi S., Tovar A., Review of Additive Manufacturing Technologies and Applications in the Aerospace Industry, In “Additive Manufacturing for the Aerospace Industry”, Elsevier, (2019).
[57] Westerweel B., Basten R.J.I., van Houtum G.J., Traditional or Additive Manufacturing? Assessing Component Design Options Through Lifecycle Cost Analysis, Eur. J. Oper. Res., 270(2): 570–585 (2018).
[58] Maamoun A.H., Elbestawi M., Dosbaeva G.K., Veldhuis S.C., Thermal Post-Processing of AlSi10Mg Parts Produced by Selective Laser Melting Using Recycled Powder, Addit. Manuf., 21: 234–247 (2018).
[59] Ma P., Prashanth K.G., Scudino S., Jia S., Wang H., Zou C., Wei Z., Eckert J., Influence of Annealing on Mechanical Properties of Al-20Si Processed by Selective Laser Melting, Metals, 4: 28–36 (2014).
[60] Bermingham M., Nicastro L., Kent D., Chen Y., Dargusch M., Optimising the Mechanical Properties of Ti-6Al-4V Components Produced by Wire + Arc Additive Manufacturing with Post-Process Heat Treatments, J. Alloys Compd., 753: 247–255 (2018).
[61] Bai Y., Wang D., Yang Y., Wang H., Effect of Heat Treatment on the Microstructure and Mechanical Properties of Maraging Steel by Selective Laser Melting, Mater. Sci. Eng. A, 760: 105–117 (2019).
[62] Aversa A., Lorusso M., Trevisan F., Ambrosio E.P., Calignano F., Manfredi D.G., Biamino S., Fino P., Lombardi M., Pavese M., Effect of Process and Post-Process Conditions on the Mechanical Properties of an A357 Alloy Produced via Laser Powder Bed Fusion, Metals, 7: 68 (2017).
[63]. Li W., Li S., Liu J., Zhang A., Zhou Y., Wei Q., Yan C., Shi Y., Effect of Heat Treatment on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism, Mater. Sci. Eng. A, 663: 116–125 (2016).
[64] Fiocchi J., Tuissi A., Bassani P., Biffi C., Low Temperature Annealing Dedicated to AlSi10Mg Selective Laser Melting Products. J. Alloys Compd., 695: 3402–3409 (2017).
[65] Aboulkhair N.T., Maskery I., Tuck C., Ashcroft I., Everitt N.M., The Microstructure and Mechanical Properties of Selectively Laser Melted AlSi10Mg: The Effect of a Conventional T6-Like Heat Treatment, Mater. Sci. Eng. A, 667: 139–146 (2016).
[66] Tradowsky U., White J., Ward R., Read N., Reimers W., Attallah A., Selective Laser Melting of AlSi10Mg: Influence of Post-processing on the Microstructural and Tensile Properties Development, Mater. Des., 105: 212–222 (2016).
[67] Aboulkhair N.T., Tuck C., Ashcroft I., Maskery I., Everitt N.M., On the Precipitation Hardening of Selective Laser Melted AlSi10Mg, Met. Mater. Trans. A, 46: 3337–3341 (2015).
[69] Bey V., Lore T., Kruth J.P., Jan V.H., Heat Treatment of Ti6Al4V Produced by Selective Laser Melting Microstructure and Mechanical Properties, J. Alloy. Compd., 541:177–185 (2012).
[70] Kim Y.K., Park S.H., Yu J.H., Mangour B.A., Lee K.A., Improvement in the High-Temperature Creep Properties via Heat Treatment of Ti-6Al-4V Alloy Manufactured by Selective Laser MeltingMater. Sci. Eng. A, 715: 33–40 (2018).
[71] Tillmann W., Schaak C., Nellesen J., Schaper M., Aydinöz M., Hoyer K.P., Hot Isostatic Pressing of IN718 Components Manufactured by Selective Laser Melting. Addit. Manuf. 13: 93–102 (2017).
[72] Rosenthal I., Tiferet E., Ganor M., Stern A., Post-processing of AM-SLM AlSi10Mg Specimens: Mechanical Properties and Fracture Behavior, Weld. Equip. Technol., 26:33–38 (2015).
[73] AboulkhairN T., Maskery I., Tuck C., Ashcroft I., Everitt N.M., The Microstructure and Mechanical Properties of Selectively Laser Melted AlSi10Mg: The Effect of a Conventional T6-like Heat Treatment, Mater. Sci. Eng. A, 667: 139–146 (2016).
[74] Goel S., Sittiho A., Charit I., Klement U., Joshi S., Effect of Post-Treatments Under Hot Isostatic Pressure on Microstructural Characteristicsof EBM-Built Alloy 718, Addit. Manuf., 28: 727–737 (2019).
[75] Cunningham R., Nicolas A., Madsen J., Fodran E., Anagnostou E., Sangid M.D., Rollett A.D., Analyzing the Effects of Powder and Postprocessing on Porosity and Properties of Electron Beam Melted Ti-6Al-4V, Mater. Res. Lett., 5 (7):516–525 (2017).
[77] Xu W., Lui E., Pateras E., Qian M., Brandt M., In Situ Tailoring Microstructure In Additively Manufactured Ti-6Al-4V for Superior Mechanical Performance, Acta Mater., 125: 390 – 400 (2017).
[78] Al-Bermani S.S., Blackmore M.L., Zhang W., Todd I., The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V, Met. Mater. Trans. A, 41: 3422–3434 (2010).
[79] Galarraga H., Lados D.A., Dehoff R.R., Kirka M.M., Nandwana P., Effects of the Microstructure and Porosity on Properties of Ti-6Al-4V ELI Alloy Fabricated by Electron Beam Melting (EBM), Addit. Manuf., 10: 47–57 (2016).
[80]. Bagherifard S., Beretta N., Monti S., Riccio M., Bandini M., Guagliano M., On the Fatigue Strength Enhancement of Additive Manufactured AlSi10Mg Parts by Mechanical and Thermal Post-Processing, Mater. Des., 145: 28–41 (2018).
[81]. Butler C., Babu S., Lundy R., Reilly Meehan R.O., Punch J., Jeffers N., Effects of Pro Cessing Parameters and Heat Treatment on Thermal Conductivity of Additively Manufactured AlSi10Mg by Selective Laser Melting, Mater. Charact., 173: 110945 (2021).
[82].Debroy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W., Additive Manufacturing of Metallic Components-Process, Structure and Properties, Prog. Mater. Sci., 92: 112–224 (2018).
[83]. Wang X.Q., Gong X.B., Chou K., Review on Powder-Bed Laser Additive Manufacturing of Inconel 718 Parts, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 231: 1890–1903 (2016).
[85] Careri, F., Imbrogno S., Umbrello D., Attallah M.M., Outeiro J., Batista A.C., Machining and Heat Treatment as Post-processing Strategies for Ni-Superalloys Structures Fabricated Using Direct Energy Deposition, J. Manuf. Process., 61: 236–244 (2021).
[86] Zhou J., Han X., Li H., Liu S., Shen S., Zhou X., Zhang D., In-Situ Laser Polishing Additive Manufactured AlSi10Mg: Effect of Laser Polishing Strategy on Surface Morphology, Roughness and Microhardness, Materials, 14: 393 (2021).
[88] Guo W., Hua M., Tse P.W.T., Mok A.C.K., Process Parameters Selection for Laser Polishing DF2 (AISI O1) by Nd:YAG Pulsed Laser Using Orthogonal Design, Int. J. Adv. Manuf. Technol., 59: 1009–1023 (2012).
[89] Ma C., Guan Y., Zhou W., Laser Polishing of Additive Manufactured Ti Alloys, Opt. Lasers Eng., 93: 171–177 (2017).
[90] Seungjong L., Zabihollah A., Jonathan W.P., Masoud M.S., Nima S., Laser Polishing for Improving Fatigue Performance of Additive Manufactured Ti-6Al-4V Parts, Opt. Laser Technol., 134: 106639 (2021).
[91] Avilés R., Albizuri J., Lamikiz A., Ukar E., Avilés A., Influence of Laser Polishing on the High Cycle Fatigue Strength of Medium Carbon AISI 1045 Steel, Int. J. Fatigue, 33: 1477–1489 (2011).
[92]. Chen L., Richter B., Zhang X., Bertsch K.B., Thoma D.J., Pfefferkorn F.E., Effect of Laser Polishing on the Microstructure and Mechanical Properties of Stainless Steel 316L Fabricated by Laser Powder Bed Fusion, Mater. Sci. Eng. A, 802:140579 (2021).
[93]. Rosa B., Mognol P., Hascoët J.Y., Laser Polishing of Additive Laser Manufacturing Surfaces, J. Laser Appl., 27: S29102 (2015).
[94] Lan L., Xin R., Jin X., Gao S., He B., Rong Y., Min N., Effects of Laser Shock Peening on Micro-Structure and Properties of Ti–6Al–4V Titanium Alloy Fabricated via Selective Laser Melting, Materials, 13: 3261 (2020).
[95] Jinoop A.N., Subbu S.K., Paul C.P., Palani I.A., Post-Processing of Laser Additive Manufactured Inconel 718 Using Laser Shock Peening, Int. J. Precis. Eng. Manuf., 20: 1621–1628 (2019).
[96] Damon J., Dietrich S., Vollert F., Gibmeier J., Schulze V., Process Dependent Porosity and the Influence of Shot Peening on Porosity Morphology Regarding Selective Laser Melted AlSi10Mg Parts, Addit. Manuf., 20:77–89 (2018).
[98] Maamoun A.H., Elbestawi M.A., Veldhuis S.C., Influence of Shot Peening on AlSi10Mg Parts Fabricated by Additive Manufacturing, J. Manuf. Mater. Process, 2: 40 (2018).
[100] Aznarte E., Ayranci C., Qureshi A., “Digital Light Processing (DLP): Anisotropic Tensile Considerations”. In Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International (2017)
[101] Ibrahim A., Sa’ude N., Ibrahim M., “Optimization of Process Parameter for Digital Light Processing (DLP) 3D” In Proceedings of Academics World 62nd International Conference, Seoul, South Korea, (2017).
[102] Chockalingam K., Jawahar N., Chandrasekhar U., Influence of Layer Thickness on Mechanical Properties in Stereolithography, Rapid Prototype. J., 12: 106-123 (2006).
[103] Bonada J., Muguruza A., Fernández-Francos X., Ramis X., Influence of Exposure Time on Mechanical Properties and Photocuring Conversion Ratios for Photosensitive Materials Used in Additive Manufacturing. Procedia Manuf., 13: 762–769 (2017).
[104] Lee Y., Lee S., Zhao X.G., Lee D., Kim T., Jung H., Kim N., Impact of UV Curing Process on Mechanical Properties and Dimensional Accuracies of Digital Light Processing 3D Printed Objects, Smart Struct. Syst., 22 (2): 161–166 (2018).
[105] Sharma A., Das S., Das K., Pulse Electroplating of Ultrafine Grained Tin Coating, Electroplating of Nanostructures 2, (2015). DOI: 10.5772/61255
[106] Sharma A., Das S., Das K., Pulse Electrodeposition of Lead-Free Tin-Based Composites for Microelectronic Packaging, Electrodeposition of Composite Materials 3, 253-274, (2016). DOI: 10.5772/62036
[108] ASM Handbook, Metallography and Microstructures, Vol 9, ASM International, Chemical and Electrolytic Polishing, Table 3 Applicability of Electrolytes in Table 2 to Electropolishing of Various Metals and Alloys, (2004).
[109] Łyczkowska P., Szymczyk P., Dybała B., Chlebus E., Chemical Polishing of Scaffolds Made of Ti–6Al–7Nb Alloy by Additive Manufacturing, Arch. Civil Mech. Eng., 14(4): 586-594 (2014).
[110] Wysocki B., Idaszek J., Buhagiar J., Szlązak K., Brynk T., Kurzydłowski K.J., Święszkowski W., The Influence of Chemical Polishing of Titanium Scaffolds on Their Mechanical Strength and in-vitro Cell Response, Mater. Sci. Eng. C, 95: 428-439 (2019).
[111] Tyagi P., Goulet T., Riso C., Garcia-Moreno F., Reducing Surface Roughness by Chemical Polishing of Additively Manufactured 3D Printed 316 Stainless Steel Components, Int. J. Adv. Manuf. Technol., 100(9-12): 2895-2900 (2019).
[112] Jain S., Corliss M., Tai B., Hung W.N., Electrochemical Polishing of Selective Laser Melted Inconel 718, Procedia Manuf., 34: 239-246 (2019).
[113] Z. Baicheng, L. Xiaohua, B. Jiaming, G. Junfeng, W. Pan, S. Chen-nan, N. Muiling, Q. Guojun, W. Jun, Study of Selective Laser Melting (SLM) Inconel 718 Part Surface Improvement by Electrochemical Polishing, Mater. Des., (2017).
[114] Ni C., Zhu L., Zheng Z., Zhang J., Yang Y., Bai, Y., Weng, C., Lu W.F., Wang H., Effect of Material Anisotropy on Ultra-Precision Machining of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting, J. Alloys Compd. 848: 156457 (2020).
[115] Ni C., Zhu L., Zheng Z., Zhang J., Yang Y., Hong R., Bai Y., Lu W.F., Wang H., Effects of Machining Surface and Laser Beam Scanning Strategy on Machinability of Selective Laser Melted Ti6Al4V Alloy in Milling, Mater. Des., 194: 108880 (2020).
[116] Bai Y., Shi Z., Lee Y.J., Wang H., Optical Surface Generation on Additively Manufactured AlSiMg0.75 Alloys with Ultrasonic Vibration-assisted Machining, J. Mater. Process. Technol., 280: 116597 (2020).
[117] Zhang J., Chaudhari A., Wang H., Surface Quality and Material Removal in Magnetic Abrasive Finishing of Selective Laser Melted 316L Stainless Steel. J. Manuf. Process, 45: 710–719 (2019).
[118] Peng X., Kong L., YingJ., Fuh H., Wang H., A Review of Post-Processing Technologies in Additive Manufacturing, J. Manuf. Mater. Process, 5:38 (2021).
[119] Wang J., Zhu J., Liew P.J., Material Removal in Ultrasonic Abrasive Polishing of Additive Manufactured Components, Appl. Sci.,9: 535 (2019).
[120]. Teng X., Zhang G., Zhao Y., Cui Y., Li L., Jiang L., Study on Magnetic Abrasive Finishing of AlSi10Mg Alloy Prepared by Selective Laser Melting, Int. J. Adv. Manuf. Technol., 105: 2513–2521 (2019).
[121] Guo J., Song C., Fu Y., Au K.H., Kum C.W., Goh M.H., Ren T., Huang R., Sun C.N., Internal Surface Quality Enhancement of Selective Laser Melted Inconel 718 by Abrasive Flow Machining, J. Manuf. Sci. Eng., 142: 1–42 (2020).
[122] Han S., Salvatore F., Rech J., Bajolet J., Courbon J., Effect of Abrasive Flow Machining (AFM) Finish of Selective Laser Melting (SLM) Internal Channels on Fatigue Performance, J. Manuf. Process, 59: 248–257 (2020).
[123] Lu L.X., Sridhar N., Zhang Y.W., Phase Field Simulation of Powder Bed-Based Additive Manufacturing, Acta Mater., 144: 801–809 (2018).
[124] Zhang J., “Micro-Blasting of 316L Tubular Lattice Manufactured by Laser Powder Bed Fusion”, 19th International Conference of the European Society for Precision Engineering and Nanotechnology, Bilbao, Spain, 3–7 June (2019).
[125] Ni C., Zhu L., Zheng Z., Zhang J., Yang Y., Hong R., Bai Y., Lu W.F., Wang H, Effects of Machining Surface and Laser Beam Scanning Strategy on Machinability of Selective Laser Melted Ti6Al4V Alloy in Milling, Mater. Des., 194: 108880 (2020).
[126] Qi G., Conner K.D., Qi H.J., Dunn M., Active Origami by 4D Printing, Smart Mater. Struct., 23: 094007 (2014).
[127] Khoo Z.X., Teoh J.E.M., Liu Y., Chua C.K., Yang S., An J., Leong K.F., Yeong W.Y., 3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing, Virtual Phys. Prototype., 10: 103–122 (2015).
[128] Pei E., 4D Printing: Dawn of an Emerging Technology, Cycle Assembly Autom, 34: 310–314 (2014).
[129]  Lipson H., Kurman M., “Fabricated: The New World of 3D Printing”, John Wiley & Sons Inc., New York, NY (2013).
[130] Gautam, A., Komal P., Synthesis of Montmorillonite Clay/Poly (Vinyl Alcohol) Nanocomposites and Their Mechanical Properties, J. Nanosci. Nanotechnol. 19: 8071-8077 (2019).