One Pot Synthesis of Polyhydroquinolines Catalyzed by Sulfonic Acid Functionalized SBA-15 as a New Nanoporous Acid Catalyst under Solvent Free Conditions

Document Type : Research Article


1 Department of Chemistry, University of Alzahra, Tehran, I.R. IRAN

2 Faculty of Chemistry, University of Tehran, Tehran, I.R. IRAN


Sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H) as a new nanoporous acid catalyst was used in the one-pot synthesis of polyhydroquinolines derivatives via the Hantzsch four component condensation reaction of aldehydes, b-ketoesters, dimedone and ammonium acetate under solvent free conditions with short reaction time in excellent yields. SBA-Pr-SO3H was proved to be an efficient heterogeneous nanoporous solid acid catalyst (pore size 6 nm), which could be easily handled and removed from the reaction mixture by simple filtration, and also recovered and reused without loss of reactivity.


Main Subjects

[1]  (a) Godfraid T., Miller R., Wibo M.,Calcium Antagonism and Calcium Entry Blockade, Pharmocol. Rev. 38, p. 321 (1986);
      (b) Sausins A., Duburs G., Synthesis of 1,4-Dihydropyridines by Cyclocondensation Reactions, Heterocycles, 27, p. 269 (1988);
      (c) Mager P.P., Coburn R.A., Solo A.J., Triggle D.J., Rothe H., QSAR, Diagnostic Statistics and Molecular Modelling of 1,4-Dihydropyridine Calcium Antagonists: A Difficult Road Ahead, Drug Des. Discovery, 8, p. 273 (1992);
    (d) Mannhold R., Jablonka B., Voigt W., Schonafinger K., Schraven K., Calcium- and Calmodulin-Antagonism of Elnadipine Derivatives: Comparative SAR, Eur. J. Med. Chem. 27, p. 229 (1992).
[2]  (a) Klusa V., Cerebrocrast, Neuroprotectant, Cognition Enhancer, Drugs Future, 20, p. 135 (1995);
      (b) Bretzel R.G., Bollen C.C., Maester E., Federlin K.F., Nephroprotective Effects of Nitrendipine in Lypertensive Type I and Type II Diabetic Patients, Am. J. Kidney Dis., 21, p. 54 (1993);
      (c) Boer R., Gekeler V., Chemosensitizers in Tumor Therapy: New Compounds Promise Better Efficacy, Drugs Future, 20, p. 499 (1995).
[3] (a) Hantzsch A., Mittheilungen Synthese von Thiazolen und Oxazolen, Ber. Dtsch. Chem. Ges. 21, p. 942, (1888);
      (b) Wiley R.H., EnglandD.C., Behr L.C., “In Organic Reactions”; John Wiley, 6, p. 367 (1951);
      (c) Dondoni A., Massi A., Minghini E., Bertolasi V., Multicomponent Hantzsch Cyclocondensation
as a Route to Highly Functionalized 2- and 4-Dihydropyridylalanines, 2- and 4-Pyridylalanines, and Their N-Oxides: Preparation Via a Polymer-Assisted Solution-Phase Approach, Tetrahedron 60, p. 2311 (2004).
[4] (a) Khadikar B.M., Gaikar V.G., Chitnavis A.A., Aqueous Hydrotrope Solution as a Safer Medium for Microwave Enhanced Hantzsch Dihydropyridine Ester Synthesis, Tetrahedron Lett. 36, p. 8083 (1995);
   (b) Ohberg L., Westman J., An Efficient and Fast Procedure for the Hantzsch Dihydropyridine Synthesis Under Microwave Conditions, Synlett 1296 (2001);
     (c) Agarwal A., Chauhan P.M.S., Solid Supported Synthesis of Structurally Diverse Dihydropyrido [2,3-d] Pyrimidines Using Microwave Irradiation, Tetrahedron Lett., 46, p. 1345 (2005).
[5] (a) Ji S.-J., Jiang Z.-Q., Lu J., Loh T.-P., Facile Ionic Liquids-Promoted One-Pot Synthesis of Polyhydroquinoline Derivatives Under Solvent Free Conditions, Synlett, 831 (2004);
      (b) Sridhar R., Perumal P.T., A New Protocol to Synthesize 1,4-Dihydropyridines by Using
3,4,5-Trifluorobenzeneboronic Acid as a Catalyst in Ionic Liquid: Synthesis of Novel 4-(3-Carboxyl-1H-Pyrazol-4-yl)-1,4-Dihydropyridines, Tetrahedron, 61, p. 2465 (2005).
[6]  (a) Phillips A.P., Hantzsch's Pyridine Synthesis, J. Am. Chem. Soc. 71, p. 4003 (1949);
    (b) Anderson G.J.R., Berkelhammer G., A Study of the Primary Acid Reaction on Model Compounds of Reduced Diphosphopyridine Nucleotide, J. Am. Chem. Soc., 80, p. 992 (1958);
      (c) Singh H., Chimni D.S.S., Kumar S., Acid Catalysed Enamine Induced Transformation of
1,3-Dimethyl-5-Formyluracil. A Unique Annulation Reaction with Enaminones, Tetrahedron, 51, p. 12775 (1995);
    (d) Gordeev M.F., Patel D.V., Gordon E.M., Approaches to Combinatorial Synthesis of Heterocycles: A Solid-Phase Synthesis of 1,4-Dihydropyridines, J. Org. Chem. 61, p. 924 (1996);
   (e) Breitenbucher J.G, Figliozzi G., Solid-Phase Synthesis of 4-aryl-1,4-Dihydropyridines via the Hantzsch Three Component Condensation, Tetrahedron Lett., 41, p. 4311, (2000);
    (f) Liang J.-C., Yeh J.-L., Wang C.-S., Liou S.-F., Tasi C.-H., Chen I.-J., The New Generation Dihydropyridine Type Calcium Blockers, Bearing 4-Phenyl Oxypropanolamine, Display α-/β-Adrenoceptor Antagonist and Long-Acting Antihypertensive Activities, Bioorg. Med. Chem., 10, p. 719, (2002);
     (g) Miri R., Niknahad H., Vesal Gh., Shafiee A., Synthesis and Calcium Channel Antagonist Activities of 3-Nitrooxyalkyl, 5-Alkyl 1,4-Dihydro-2,6-Dimethyl -4-(1-Methyl-5-Nitro-2-Imidazolyl)-3, 5-Pyridinedicarboxylates, IL Farmaco, 57, p. 123 (2002);
  (h) Dondoni A., Massi A., Minghini E., Sabbatini S., Bertoasi V., Model Studies Toward the Synthesis of Dihydropyrimidinyl and Pyridyl α-Amino Acids Via Three-Component Biginelli and Hantzsch Cyclocondensations, J. Org. Chem., 68, p. 6172, (2003);
     (i) Dondoni A., Massi A., Minghini E., Bertoasi V., Multicomponent Hantzsch Cyclocondensation as a Route to Highly Functionalized 2- and 4-Dihydropyridylalanines, 2- and 4-Pyridylalanines, and Their N-Oxides: Preparation Via a Polymer-Assisted Solution-Phase Approach, Tetrahedron, 60, p. 2311 (2004);
     (j) Tewari N., Dwivedi N., Tripathi R.P., Tetrabutylammonium Hydrogen Sulfate Catalyzed Eco-Friendly and Efficient Synthesis of Glycosyl 1,4-Dihydropyridines, Tetrahedron Lett., 45, p. 9011 (2004);
      (k) Moseley J.D., Alternative Esters in the Synthesis of ZD0947, Tetrahedron Lett., 46, p. 3179 (2005).
[7] Sabitha G., Reddy G.S.K.K., Reddy Ch.S., Yadav J.S., A Novel TMSI-Mediated Synthesis of Hantzsch 1,4-Dihydropyridines at Ambient Temperature, Tetrahedron Lett., 44, 4129 (2003).
[8] Wang L.-M., Sheng J., Zhang L., Han J.-W., Fan Z., Tian H., Qian C.-T., Facile Yb(OTf)3 Promoted
One-Pot Synthesis of Polyhydroquinoline Derivatives Through Hantzsch Reaction, Tetrahedron, 61, p. 1539 (2005).
[9] Ko S., Sastry M.N.V., Lin C., YaoC., Molecular Iodine-Catalyzed One-Pot Synthesis of 4-Substituted-1,4- Dihydropyridine Derivatives Via Hantzsch Reaction, Tetrahedron Lett., 46, p. 5771 (2005).
[10] Beck S., Vartuli J.C., Roth W.J., Kresge C.T., Leonowicz M.E., Schmitt K.D., Chu C.T-W., Olson D.H., Sheppard E.W., McCullen S.B., Higgins J.B., Schlenker J.L., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc. 114, p. 10834, (1992).
[11] Reinert P., Garcia B., Morin C., Badiei A., Perriat P., Tillement O., Bonneviot L., Cationic Templating with Organic Counterion for Superstable Mesoporous Silica, Nanotechnology in Mesostructure Materials, Stud. Surf. Sci. Catal., 146, p. 133, (2003).
[12] Bonneviot L., Morin M., Badiei A., Mesostructured Metal or Nano-Metal Oxides and Method for Making Same, Patent No. 01/55031 A1, (2001).
[13] Zhao D., Huo Q., Feng J., Chmelka B.F., Stucky G.D., Nonionic Triblock and Star Diblock Copolymer and Oligomeric Sufactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc., 120, p. 6024 (1998).
[14] Trong On D., Desplantier-Giscard D., Danumah C., Kaliaguine S., Perspectives in Catalytic Applications of Mesostructured Materials, Appl. Catal. A: Gen., 222, p. 299 (2001).
[15] Mohammadi Ziarani G., Badiei A., Miralami A., The Study of Solvent Effect on the Diastereoselectivity of Diels-Alder Reaction in the Presence of Nanoporous Silica-Supported Cerium Sulfonate Catalyst, Eur. J. Sci. Res., 18, p. 282 (2007).
[16] Ganjali M.R., Daftari A., Hajiagha Babaei L., Badiei A., Saberyan K., Mohammadi Ziarani G., Moghimi A., Pico Level Monitoring of Silver with Modified Hexagonal Mesoporous Compound (MCM-41) and Inductiviely Coupled Plasma Atomic Emission Spectrometry, Water, Air, Soil Pollut., 173, p. 71, (2006).
[17] Gangali M.R., Hajiagha Babaei L., Badiei A., Mohammadi Ziarani G., Tarlani A., Novel Method for the Fast Preconcentration and Monitoring of a ppt Level of Lead and Copper with a Modified Hexagonal Mesoporous Silica Compound and Inductively Coupled Plasma Atomic Emission Spectrometry, Anal. Sci., 20, p. 725, (2004).
[18] Ganjali M.R., Hajiagha Babaei L., Badiei A., Saberian K., Behbahani S., Mohammadi Ziarani G., Salavati- Niasari M., A Novel Method for Fast Enrichment and Monitoring of Hexavalent and Trivalent Chromium at the PPT Level with Modified Silica MCM-41 and its Determination by Inductively Coupled Plasma Optical Emission Spectrometry, Quim. Nova, 29,p. 440 (2006).
[19] Badiei A., Norouzi P., Tousi F., Study of Electrochemical Behavior and Adsorption Mechanism of [Co(en)2Cl2]+ on Mesoporous Modified Carbon Paste Electrode, Eur. J. Sci. Res., 12, p. 39 (2005).
[20] Zhang H.-X., Cao A.-M., Hu J.-S., Wan L.-J., Lee S.-T.,Electrochemical Sensor for Detecting Ultratrace Nitroaromatic Compounds Using Mesoporous SiO2-Modified Electrode, Anal. Chem., 78, p. 1967 (2006).
[21] Walcarius A., Despas C., BessiereJ., Selective Monitoring of Cu((II)) Species Using a Silica Modified Carbon Paste Electrode, Anal. Chim. Acta, 385, p. 79, (1999).
[22] Lim M.H., Blanford C.F., Stein A., Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts, Chem. Mater. 10, p. 467 (1998).
[23] Wight A.P., Davis M.E., Design and Preparation of Organic-Inorganic Hybrid Catalysts, Chem. Rev., 102, p. 3589 (2002).
[24] a) van Rhijn W.M., De Vos D., Sels B.F., Bossaert W.D., Jacobs P.A., Sulfonic Acid Functionalised Ordered Mesoporous Materials as Catalysts for Condensation and Esterification Reactions, Chem. Commun., 317 (1998);
     b) Das B., Venkateswarlu K., Holla H., Krishnaiah M., Sulfonic Acid Functionalized Silica: A Remarkably Efficient Heterogeneous Reusable Catalyst for α-Monobromination of Carbonyl Compounds Using N-Bromosuccinimide, J. Mol. Catal. A: Chem. 253, p. 107 (2006);
       c) Onaka M., Hashimoto N., Kitabata Y., Yamasaki R., Aluminum-Rich Mesoporous Aluminosilicate (Al-HMS) as a Solid Acid Catalyst for the Diels-Alder Reaction of Acrylates with 1,3-Dienes, Appl. Catal. A: General., 241, p. 307 (2003).
[26] Karimi B., Zareyee D., Design of a Highly Efficient and Water-Tolerant Sulfonic Acid Nanoreactor Based on Tunable Ordered Porous Silica for the von Pechmann Reaction, Org. Lett., 10, p. 3989 (2008).
[27] Nagarapu L., Kumari M.D., Kumari N.V., Kantevari S., MCM-41 Catalyzed Rapid and Efficient One-Pot Synthesis of Polyhydroquinolines Via the Mantzsch Reaction Under Solvent-Free Conditions, Catal. Commun., 8, p. 1871 (2007).
[28] Mohammadi Ziarani G., Badiei A., Miralami A., A Study of the Diastereoselectivity of Diels-Alder Reactions on the Ce-SiO2 as Support, Bull. Korean Chem. Soc. 29, p. 47 (2008).
[29] a) Kumar A., Maurya R.A., Synthesis of Polyhydroquinoline Derivatives Through Unsymmetric Hantzsch Reaction Using Organocatalysts, Tetrahedron, 63, p. 1946 (2007);
       b) Kumar A., Maurya R.A., Bakers Yeast Catalyzed Synthesis of Polyhydroquinoline Derivatives via
an Unsymmetrical Hantzsch Reaction, Tetrahedron Lett. 48, p. 3887 (2007).
[30] Heravi M., Bakhtiari Kh., Javadi N.M, Bamoharam F., Saeedi M., Oskooie H., K7[PW11CoO40]-Catalyzed One-Pot Synthesis of Polyhydroquinoline Derivatives via the Hantzsch Three Component Condensation,
J. Mol. Catal.
A, 264, p. 50 (2007).
[31] Donelson L.J., Gibbs R.A., De S., An Efficient One-Pot Synthesis of Polyhydroquinoline Derivatives Through the Hantzsch Four Component Condensation, J. Mol. catal. A, 256, p. 309 (2006).
[32] Song G., Wang B., Wu X., Kang Y., Yang L., Montmorillonite K10 Clay: An Effective Solid Catalyst for One-Pot Synthesis of Polyhydroquinoline Derivatives, Synth. Commun., 35, p. 2875 (2005).
[33] a) Shaabani A., Maleki A., A Fast and Efficient Method for the Synthesis of 1,5-Benzodiazepine Drivatives Under Solvent-Free Conditions, Iran J. Chem. Chem. Eng., 26, p. 93 (2007);
      b) Bigdeli M.A., Nahid N., Heravi M.M., Sulphuric Acid Adsorbed on Silica Gel. A Remarkable Acetylation Catalyst,  Iran J. Chem. Chem. Eng., 19 (2000).