Passive Thermal Management of a Lithium-Ion Battery Using Carbon Fiber Loaded Phase Change Material: Comparison and Optimization

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Shiraz University, Shiraz, I.R. IRAN

2 Department of Chemical Engineering, Hamedan University of Technology, Hamedan, I.R. IRAN

3 Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, I.R. IRAN

Abstract

Phase Change Materials (PCMs) are currently used for many heat management applications. However, the heat transfer performance of PCMs is limited by their low thermal diffusivities. This is a critical issue for high heat flux applications, such as in the thermal management of lithium-ion (Li-ion) batteries. The present work aims the study heat transfer enhancement
in a cylindrical Li-ion battery thermal management system consisting of a PCM (paraffin) loaded with randomly distributed and radially oriented carbon fibers. The system was simulated numerically under various cooling conditions, including naturally convecting air, in the presence of pure paraffin, and the presence of carbon fiber-loaded paraffin. The results for orderly arranged carbon fibers were compared with those of random distribution. Numerical results indicated that better battery thermal management can be achieved for the radially distributed carbon fiber arrangement in the PCM.
The advantage of radial over random distributions can be due to the constant, uniform, and non-agglomerating distribution of carbon fibers under which thermo-physical properties of carbon fibers are better realized in the composite medium. The presence of carbon fibers with thermal conductivity of k=50W/m K in the PCM has caused more uniform temperature profiles in the radial direction because of the improved thermal conductivities. The results of this research can be used as a guideline for designing a battery thermal management system.

Keywords

Main Subjects


[1] Goli P., Legedza S., Dhar A., Salgado R., Renteria J., Balandin A. A., Graphene-enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries, J. Power Sources, 248: 37-43 (2014).
[2] Duan X., Naterer G. F., Heat Transfer in Phase Change Materials for Thermal Management of Electric Vehicle Battery Modules, Int. J. Heat Mass Transfer, 53(23-24): 5176–5182 (2010).
[3] Ramandi M. Y., Dincer I., Naterer G. F., Heat Transfer and Thermal Management of Electric Vehicle Batteries with Phase Change MaterialsJ. Heat Mass Transfer, 47(7): 777-788 (2011).
[4] Zalba B., Marıń J. M., Cabeza L. F., Mehling H., Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications, Appl. Therm. Eng., 23(3): 251–83 (2003).
[5] Najafi B., Bahari M., Babapoor A., Evaluation of α-AL2O3-PW Nanocomposites for Thermal Energy Storage in the Agro-products Solar Dryer, J. Energy Storage, 28: 101181 (2020).
[6] Sakkaki M., Sadegh Moghanlou F., Parvizi S., Baghbanijavid H., Babapoor A., Shahedi Asl M., Phase Change Materials as Quenching Media for Heat Treatment of 42CrMo4 Steels, J. Central South University, 27: 752-761 (2020).
[7] Xia L., Zhang P., Wang R. Z., Preparation and Thermal Characterization of Expanded Graphite/Paraffin Composite Phase Change Material, Carbon, 48(9): 2538-2548 (2010).
[8] Babapoor A., Azizi M., Karimi G., Thermal Management of a Li-Ion Battery Using Carbon Fiber-PCM Composites, Appl. Therm. Eng., 82: 281-90 (2015).
[9] Babapoor A., Karimi G., Khorram M., Fabrication and Characterization of Nanofiber-Nanoparticle-Composites with Phase Change Materials by Electrospinning, Appl. Therm. Eng., 99: 1225–1235 (2016).
[11] Wang Z., Li X., Zhang G., Lv Y., Wang C., He F., Yang C., Yang Ch., Thermal Management Investigation for Lithium-ion Battery Module with Different Phase Change Materials, RSC Adv., 7(68): 42909-42918 (2017).
[13] Babapoor A., Karimi G., Sabbaghi S., Thermal Characteristic of Nanocomposite Phase Change Materials During Solidification Process, J. Energy Storage, 7: 74-81 (2016).
[14] Karimi G., Azizi M. M., Babapoor A., Experimental Study of a Cylindrical Lithium-ion Battery Thermal Management Using Phase Change Material Composites, J. Energy Storage, 8: 168–174 (2016).
[15] Babapoor A., Karimi G., Golestaneh S. I., Ahmadi Mezjin M., Coaxial Electro-spun PEG/PA6 Composite Fibers: Fabrication and Characterization, Appl. Therm. Eng., 118: 398-407 (2017).
[16] Golestaneh S.I., Karimi G., Babapoor A., Torabi F., Thermal Performance of Co-electrospun Fatty Acid Nanofiber Composites in the Presence of Nanoparticles, App. Energy, 212: 552-564 (2018).
[17] Usman H., Ali H. M., Arshad A., Ashraf M. J., Khushnood S., Janjua M., Kazi S. N., An Experimental Study of PCM Based Finned and Un-Finned Heat Sinks for Passive Cooling of Electronics, Heat Mass Transfer, 54: 3587-3598 (2018).
[18] Fattahi M., Delbari S. A., Babapoor A., Sabahi Namini A., Mohammadi M., Shahedi Asl M., Triplet Carbide Composites of TiC, WC, and SiC, Ceram. Int., 46(7): 9070-9078 (2020).
[19] Sabahi Namini A., Ahmadi Z., Babapoor A., Shokouhimehr M., Shahedi Asl M., Microstructure and Thermomechanical Characteristics of Spark Plasma Sintered TiC Ceramics Doped with Nano-Sized WC, Ceram. Int., 45(2): 2153-2160 (2019).
[20] Fattahi M., Babapoor A., Delbari S. A., Ahmadi Z., Sabahi Namini A., Shahedi Asl M., Strengthening of TiC Ceramics Sintered by Spark Plasma via Nano-graphite Addition, Ceram. Int., 46(8): 12400-12408 (2020).
[22] Babapoor A., Shahedi Asl M., Ahmadi Z., Sabahi Namini A., Effects of Spark Plasma Sintering Temperature on Densification, Hardness and Thermal Conductivity of Titanium Carbide, Ceram. Int., 44(12): 14541-14546 (2018).
[23] Nguyen T. P., Shokouhimehr M., Azizian-Kalandaragh Y., Babapoor A., Van Le Q., Sabahi Namini A., Shahedi Asl M., Delbari S. A., Characteristics of Quadruplet Ti–Mo–TiB2–TiC Composites Prepared by Spark Plasma Sintering, Ceram. Int., (2020).
[24] Nguyen T. P., Pazhouhanfar Y., Delbari S. A., Sabahi Namini A., Babapoor A., Mohammadpour Derakhshi Y., Shaddel S., Van Le Q., Shokouhimehr M., Shahedi Asl M., Physical, Mechanical and Microstructural Characterization of TiC–ZrN Ceramics, Ceram. Int. (2020).
[25] Shahedi Asl M., Ahmadi Z., Sabahi Namini A., Babapoor A., Motallebzadeh A., Spark Plasma Sintering of TiC–SiCw Ceramics, Ceram. Int., 45(16): 19808-19821 (2019).
[26] Al-Hallaj S., Kizilel R., Lateef A., Sabbah R., Farid M., Selman J. R., Passive Thermal Management Using Phase Change Material (PCM) for EV and HEV Li-ion Batteries, in: “Vehicle Power and Propulsion IEEE Conference” , (2005).
[27] Khateeb S. A., Amiruddin S., Farid M., Selman J. R., Al-Hallaj S., Thermal Management of Li-ion Battery with Phase Change Material for Electric Scooters: Experimental Validation, J. Power Sources, 142(1-2): 345-353 (2005).
[28] Fukai J., Kanou M., Kodama Y., Miyatake O., Thermal Conductivity Enhancement of Energy Storage Media Using Carbon Fibers, Energy Convers. Manage., 41(14):1543-1556 (2000).
[29] Haghighi A., Babapoor A., Azizi M. M., Javanshir Z., Ghasemzadeh H., Optimization of the Thermal Performance of PCM Nanocomposites, J. Energy Manage. Technol. (JEMT), 4(2): 14-19 (2020).
[31] Frusteri F., Leonardi V., Vasta S., Restuccia G., Thermal Conductivity Measurement of a PCM Based Storage System Containing Carbon Fibers, Appl. Therm. Eng., 25(11-12): 1623-1633 (2005).
[32] Samimi F., Babapoor A., Azizi M. M., Karimi G., Thermal Management Analysis of a Li-ion Battery Cell Using Phase Change Material Loaded with Carbon Fibers, Energy, 96: 355-371 (2016).
[33] Karimi G., Li X., Thermal Management of Lithium-ion Batteries for Electric Vehicles, Int. J. Energy Res., 37(1):13-24 (2013).
[34] Karimi G., Dehghan Bidokhti A., Thermal Analysis of High-power Lithium-ion Battery Packs Using Flow Network Approach, Int. J. Energy Res., 38: 1793-811 (2014).
[35] Karimi G., Dehghan Bidokhti A., Thermal Management Analysis of a Lithium-ion Battery Pack Using Flow Network Approach, Int. J. Mech., 1: 188-194 (2102).
[36] Al-Hallaj S., Selman J. R., Thermal Modeling of Secondary Lithium Batteries for Electric Vehicle/Hybrid Electric Vehicle Applications, J. Power Sources, 110(2): 341-348 (2002).
[37] Javani N., Dincer I., Naterer G. F., Numerical Modeling of Submodule Heat Transfer with Phase Change Material for Thermal Management of Electric Vehicle Battery Packs, J. Therm. Sci. Eng. Appl., 7(3):031005 (2015).
[38] Valan Arasu A., Mujumdar A. S., Numerical Study on Melting of Paraffin Wax with Al2O3 in a Square Enclosure, Int. Commun. Heat Mass Transfer, 39(1):16-22 (2012).  
[39] Patankar S. V., “Numerical Heat Transfer and Fluid Flow (Series in Computation and Physical Processes in Mechanics and Thermal Sciences)”, Hemisphere Publishing Company (1980).
[40] Chow L. C., Zhong J. K., Thermal Conductivity Enhancement for Phase Change Storage Media, Int. Commun. Heat Mass Transfer, 23(1):91-100 (1996).
[41] Vajjha R. S., Das D. K., Namburu P. K., Numerical Study of Fluid Dynamic and Heat Transfer Performance of Al2O3 and CuO Nanofluids in the Flat Tubes of a Radiator, Int. J. Heat Fluid Flow, 31(4): 613-621 (2010).
[42] Kandasamy R., Wang X. Q., Mujumdar A. S., Transient Cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks, Appl. Therm. Eng., 28(8-9): 1047–1057 (2008).
[43] Sasmito A. P., Kurnia J. C., Mujumdar A. S., Numerical Evaluation of Laminar Heat Transfer Enhancement in Nanofluid Flow in Coiled Square Tubes, Nanoscale Res. Lett., 6(1): 376-90 (2011).
[44] Rao Y., Frank D., Peter S., Convective Heat Transfer Characteristics of Microencapsulated Phase Change Material Suspensions in Mini-channels, Heat Mass Transfer, 44(2):175-186 (2007).
[45] Sabbah R., Farid M. M., Al-Hallaj S., Micro-channel Heat Sink with Slurry of Water with Microencapsulated Phase Change Material: 3D-numerical Study, Appl. Therm. Eng., 29(2-3): 445-454 (2009).
[46] Fukai J., Hamada Y., Morozumi Y., Miyatake O., Effect of Carbon-fiber Brushes on Conductive Heat Transfer in Phase Change Materials, Int. J. Heat Mass Transfer, 45(24):4781-4792 (2002).
[47] Valan Arasu A., Sasmito A. P., Mujumdar A. S., Numerical Performance Study of Paraffin Wax Dispersed with Alumina in a Concentric Pipe Latent Heat Storage SystemTherm. Sci., 17(2): 419-430 (2013).
[48] Mohammadi Khoshraj B., Seyyed Najafi F., Mohammadi Khoshraj J., Ranjbar H., Microencapsulation of Butyl Palmitate in Polystyrene-co-Methyl Methacrylate Shell for Thermal Energy Storage ApplicationIran. J. Chem. Chem. Eng. (IJCCE), 37(3): 187-194 (2018).
[49] Li J., Effect of Fiber Surface Treatment on Wear Characteristics of Carbon Fiber Reinforced Polyamide 6 Composites, Iran. J. Chem. Chem. Eng. (IJCCE), 29(1): 141-147 (2010).
[50] Anbia, M., Khazaei, M., Ordered Nanoporous Carbon-Based Solid-Phase Microextraction for the Analysis of Nitroaromatic Compounds in Aqueous Samples, Iran. J. Chem. Chem. Eng. (IJCCE), 33(4): 29-39 (2014).
[51] Aminy M., Barhemmati-Rajab N., Zamzamian S. A., Investigating Effect of CuO and TiO2 Nano Particles on Tribological Characteristics of Engine Oil, J. Adv. Mate. Technol. 3(4): 71-76 (2015).
[53] Aminy M., Barhemmati-Rajab N., Hadadian A., Vali F., “Design of a Photovoltaic System for a Rural House, Second Iranian Conference on Renewable Energy and Distributed Generation, Tehran, 2012,
[54] Babapoor A., Haghighi A., Jokar S. M., Ahmadi Mezjin M., The Performance Enhancement of Paraffin as a PCM During the Solidification Process: Utilization of Graphene and Metal Oxide Nanoparticles, Iran. J. Chem. Chem. Eng. (IJCCE), (2021). [In Press]