On the Development of a Modified Nonelectrolyte NRTL-NRF Model for Strong and Weak Electrolyte Solutions

Document Type : Research Article


1 Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, I.R. IRAN

2 Department of Chemical Engineering, Hamedan University of Technology, Hamedan, I.R. IRAN

3 Department of Chemical Engineering, Tarbiat Modares University, Tehran, I.R. IRAN


The non-electrolyte NRTL-NRF model has been modified to study electrolyte solutions. The modified model for electrolytes is composed of short-range parts expressed by the modified nonelectrolyte NRTL-NRF and the Pitzer-Debye-Hückel equation to represent the long-range interactions of ions in the solution. In this work, a salt-specific parameter is used. Various types of experimental data including binary and ternary activity and osmotic coefficients, solid and gas solubilities in aqueous NaCl, and also aqueous Methyldiethanolamine  (MDEA) data at wide temperature and pressure ranges have been implemented to check the performance of the present model. The overall relative standard deviation of 0.046 has been achieved for 130 strong aqueous binary electrolytes by the new model in fitting the experimental data of activity coefficients. The percent of absolute average deviations of the modified model for CO2+ MDEA+ H2O andH2S+ MDEA+ H2O is 30.3% and 24.8%, respectively. The results show the good capabilities of the model for electrolyte solutions.


Main Subjects

[1] Prausnitz J. M., Lichtenthaler R. N., de Azevedo E. G., “Molecular Thermodynamics of Fluid-phase Equilibria”, 3rd ed., Prentice Hall PTR, New Jersey, (1999).
[2] Zemaitis J.F., Clark D.M., Rafal M., Scrivner N.C., “Handbook of Aqueous Electrolyte Thermodynamics”, American Institute of Chemical Engineers, N.Y, (1986).
[4] Myers Jason A., Sandler S. I., Wood R. H., An Equation of State For Electrolyte Solutions Covering Wide Ranges of Temperature, Pressure, and Composition, Ind. Eng. Chem. Res., 41: 3282–3297 (2002).
[5] Lin Y., Thomsen K., de Hemptinne J.C., Multicomponent Equations of State for Electrolytes, AIChE J., 53: 989–1005 (2007).
[7] Haghtalab A., Mazloumi S.H., A new coordination Number Model for Development of a Square-Well Equation of State, Fluid Phase Equilib., 280: 1–8 (2009).
[8] Haghtalab A., Mazloumi S.H., A Square-Well Equation of State for Aqueous Strong Electrolyte Solutions, Fluid Phase Equilib., 285: 96–104 (2009).
[10] Haghtalab A., Mazloumi S.H., Electrolyte Cubic Square-Well Equation of State for Computation of the Solubility CO2 and H2S in Aqueous MDEA Solutions, Ind. Eng. Chem. Res., 49: 6221-6230 (2010).
[12] Chen C.-C., Evans L.B., Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems, AIChE J., 32:444-454 (1986).
[13] Zhao E., Yu M., Sauve R.E., Khoshkbarchi M.K., Extension of the Wilson Model to Electrolyte Solutions, Fluid Phase Equilib., 173: 161-175 (2000).
[14] Haghtalab A., Vera J.H., A nonrandom Factor Model for the Excess Gibbs Energy of Electrolyte Solutions, AIChE J., 34: 803–813 (1988).
[15] Sadeghi R., New Local Composition Model for Electrolyte Solutions, Fluid Phase Equilib., 231: 53–60 (2005).
[16] Liu Y., Harvey A.H., Prausnitz J.M., Thermodynamics of Concentrated Electrolyte Solutions, Chem. Eng. Commun., 77: 43-66 (1989).
[17] Jaretun A., Aly G., New local Composition Model for Electrolyte Solutions: Single Solvent, Single Electrolyte Systems, Fluid Phase Equilib., 163: 175-193 (1999).
[18] Xu X., Macedo E. A., New Modified Wilson Model for Electrolyte Solutions, Ind. Eng. Chem. Res., 42: 5702–5707 (2003).
[20] Pazuki G.R., Rohani A.A., Dashtizadeh A., Correlation of the Mean Ionic Activity Coefficients of Electrolytes in Aqueous Amino Acid and Peptide Systems, Fluid Phase Equilib., 231: 171-175 (2005).
[22] Haghtalab A., Shojaeian A., Mazloumi S.H., Nonelectrolyte NRTL-NRF Model to Study Thermodynamics of Strong and Weak Electrolyte Solutions, J. Chem. Thermodyn., 43: 354-363 (2011).
[23] Lu X., Zhang L., Wang Y., Shi J., Maurer G., Prediction of Activity Coefficients of Electrolytes in Aqueous Solutions at High Temperatures, Ind. Eng. Chem. Res., 35: 1777-1784 (1996).
[24] Christensen C., Sander B., Fredenslund A., Rasmussen P., Towards the Extension of UNIFAC
to Mixtures with Electrolytes
, Fluid Phase Equilib., 13:297-309 (1983).
[26] Song Y., Chen C.-C., Symmetric Nonrandom Two-Liquid Segment Activity Coefficient Model for Electrolytes, Ind. Eng. Chem Res., 48: 7788-7797 (2009).
[28] Mazloumi S. H., An Ion-Based Nonelectrolyte NRTL-NRF for Aqueous Electrolyte SolutionsCALPHAD, 51: 299–305 (2015).
[29] Mazloumi S. H., On the Application of Nonelectrolyte UNIQUAC-NRF Model for Strong Aqueous Electrolyte Solutions, Fluid Phase Equilib., 417: 70–76 (2016).
[32] Mohammadian Abriz A., Majdan Cegincara R., Modeling the Transport and Volumetric Properties of Solutions Containing Polymer and Electrolyte with New Model, Iran. J. Chem. Chem. Eng. (IJCCE), 37(4): 235-252 (2018).
[33] Mazloumi S.H., Shojaeian A., Modified Nonelectrolyte Wilson-NRF:  A New Model for Strong and Weak Electrolyte Solutions, J. Mol. Liquids, 277:714-725 (2019).
[35] Pahlevanzadeh H., Mohseni-Ahooei A., Estimation of UNIQUAC-NRF Model Parameters for NH3-CO2-H2O System, Iran. J. Chem. Chem. Eng. (IJCCE), 24(1): 21-26 (2005).
[36] Renon H., Prausnitz J. M., Local Composition in Thermodynamic Excess Functions for Liquid Mixtures, AIChE J., 14: 135-144 (1986).
[37] Wilson G. H. Vapor-Liquid Equilibrium. XI. A New Expression for Excess Free Energy of Mixing, J. Am. Chem. Soc., 86:127-130 (1964).
[39] Robinson R.A., Stokes R.H., “Electrolyte Solutions”, 2nd ed., Butterworthm, London, 1965.
[40] Hamer W. J., Wu Y. C., Osmotic Coefficients and Mean Activity Coefficients of Uni-Univalent Electrolytes In Water At 25° C, J. Phys. Chem. Ref. Data, 1: 1074-1099 (1972).
[41] Holmes H., Mesmer R. Thermodynamics of Aqueous Solutions of the Alkali Metal Sulfates, J. Solution Chem., 15: 495-517 (1986).
[42] Archer D. G., Thermodynamic Properties of the KCl+ H2O System, J. Phys. Chem. Ref. Data, 28: 1-16 (1999).
[43] Archer D.G., Thermodynamic Properties of the NaNO3+ H2O System, J. Phys. Chem. Ref. Data, 29: 1141-1156 (2000).
[44] Pitzer K. S., Peiper J. C., Busey R. Thermodynamic properties of Aqueous Sodium Chloride SolutionsJ. Phys. Chem. Ref. Data, 13: 1-102 (1984).
[45] Archer D.G., Thermodynamic properties of the NaBr+ H2O System, J. Phys. Chem. Ref. Data, 20: 509-555 (1991).
[47] Dinane A., El Guendouzi M., Mounir A., Hygrometric Determination of Water Activities, Osmotic and Activity Coefficients of (NaCl+ KCl) (aq) at T= 298.15 K, J. Chem. Thermodyn., 34: 423–441 (2002).
[49] Azougen R., El Guendouzi M., Rifai A., Faridi, J., Water Activities, Activity Coefficients and Solubility in the Binary and Ternary Aqueous Solutions with Y=Mg2+; Ca2+; or Ba2+, CALPHAD, 34:36-44 (2010).
[50] El Guendouzi M., Azougen R., Mounir A., Benbiyi A., Water activities, Osmotic and Activity Coefficients of the System (NH4)2SO4–K2SO4–H2O at the Temperature 298.15 K, CALPHAD, 27: 409–414 (2003).
[51] El Guendouzi M., Benbiyi A., Dinane A., Azougen R., Thermodynamic Properties of Multicomponent NaCl–LiCl–H2O Aqueous Solutions at Temperature 298.15 K, CALPHAD, 28: 97–103 (2004).
[52] El Guendouzi M., Benbiyi A., Azougen R., Dinane A., Thermodynamic Properties of Two Ternary Systems {yCsCl+ (1− y) LiCl}(aq) and {yCsCl+ (1− y) NaCl}(aq) at Temperature 298.15 K, CALPHAD, 28: 435–444 (2004).
[54] Errougui A., El Guendouzi M., Thermodynamic Properties of Ternary Aqueous Mixtures of {yMgCl2+(1− y) Mg (NO3) 2}(aq) at T=298.15 K, CALPHAD, 30: 260–265 (2006).
[55] Archer D.G., Thermodynamic Properties of the NaNO3+H2O System, J. Phys. Chem. Ref. Data, 29: 1141–1156 (2000).
[57] Archer D.G., Thermodynamic Properties of the KCl+H2O System, J. Phys. Chem. Ref. Data, 28: 1–16 (1999).
[59] Linke W.F., Seidell A., “Solubilities of Inorganic and Metal-Organic Compounds II”, American Chemical Society, Washington, (1965).
[62] Rumpf B., Nicolaisen H., Öcal C., Maurer G., Solubility of Carbon Dioxide in Aqueous Solutions of Sodium Chloride: Experimental Results and Correlation, J. Soln. Chem., 23: 431-448 (1994).
[63] Austgen D. M., Rochelle G. T., Peng X., Chen C. C., Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems Using the Electrolyte NRTL Equation, Ind. Eng. Chem. Res., 28:1060–1073 (1989).
[64] Posey M.L., G.T. Rochelle, A Thermodynamic Model of Methyldiethanolamine-CO2-H2S-Water, Ind. Eng. Chem. Res., 36: 3944–3953 (1997).
[65] Haghtalab, A., Shojaeian, A., Modeling Solubility of Acid Gases in Alkanolamines Using the Nonelectrolyte Wilson-Nonrandom Factor Model, Fluid Phase Equilib., 289: 6–14 (2010).
[68] Arcis H., Rodier L., Ballerat-Busserolles K., Coxam J.-Y.,  J. Chem. Thermodyn., 41:783–789 (2009).
[69] Chunxi L., Fürst W., Representation of CO2 and H2S Solubility in Aqueous MDEA Solutions Using an Electrolyte Equation of state, Chem. Eng. Sci., 55: 2975–2988 (2000).
[70] Derks P. W. J., Hogendoorn J. A., Versteeg G. F., Experimental and Theoretical Study of the Solubility of Carbon Dioxide in Aqueous Blends of Piperazine and N-methyldiethanolamine, J. Chem. Thermodyn., 42: 151–163 (2010).
[71] Maddox R.N., Bhairi A.H., Diers J.R., “Research Report RR-104”, Gas Processors Association, Tulsa, (1987).
[72] Jou F. Y., Mather A. E., Otto F. D., Solubility of H2S and CO2 in Aqueous Methyldiethanolamine Solutions, Ind. Eng. Chem. Process Des. Dev., 21: 539–544 (1982).
[73] MacGregor R.J., Mather A.E., Equilibrium Solubility of H2S and CO2 and their Mixtures in a Mixed Solvent, Can. J. Chem. Eng., 69: 1357–1366 (1991).
[75] Jou F.-Y., Otto F. D., Mather A. E., Vapor-Liquid Equilibrium of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine and Methyldiethanolamine, Ind. Eng. Chem. Res., 33: 2002–2005 (1994).
[76] Jou F.-Y., Carroll J.J., Mather A.E., Otto F.D., The Solubility of Carbon Dioxide and Hydrogen Sulfide in a 35 wt% Aqueous Solution of Methyldiethanolamine, Can. J. Chem. Eng., 71: 264-268 (1993).
[77] Ho B.S., Eguren R.R., Solubility of Acidic Gases in Aqueous DEA and MDEA Solutions. Amoco Production Company, Paper No. 69-a, Presented at “The 1988 Spring National Meeting of the American Institute of Chemical Engineers”, March 6–10, (1988).