Optimization of Solar-Photocatalytic Degradation of Polychlorinated Biphenyls Using Photocatalyst (Nd/Pd/TiO2) by Taguchi Technique and Detection by Solid Phase Nano Extraction

Document Type : Research Article


1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, I.R. IRAN


Nd/Pd/TiO2 photocatalyst has been synthesized in the presence of Hydroxyl Propyl Cellulose by sol-gel method with Titanium tetra isopropoxide as titanium precursor. Photocatalyst size and structure properties of the nano-catalyst have been determined by X-Ray Diffraction (XRD). It has contained the anatase phase in advance. The surface area is measured by the Brunauer, Emmett, and Teller (BET) method. The presence of Ti, Nd, and Pd in the nanostructure has been confirmed by EDX, equipped tool with SEM. Photocatalytic degradation of PCB-28 under solar light has been investigated by the Taguchi method with five factors such as the amount of HPC (g/gsol), the percentage of Pd (%), the percentage of Nd (%), calcination temperature (°C), and calcination time (h). Under optimal conditions such as 0.003 of HPC (g/gsol), 0.2 percentage of Pd (%), 0.2 percentage of Nd (%), 700°C of the calcination temperature, and 5 hours for the calcination time, the best desorption result monitored by Solid Phase Nano Extraction (SPNE) technique method before degradation process. By GC-ECD, complete degradation of PCBs was observed after solar irradiation in 14min, and no PCBs chromatogram was observed after this time.


Main Subjects

[1] Fan G., Wang Y., Fang G., Zhu X., Zhou D., Review of Chemical and Electrokinetic Remediation of PCBs Contaminated Soils and Sediments, Environ. Sci. Process. Impacts., 18(9): 1140–1156 (2016).
[2] Shaban Y.A., El Sayed M.A., El Maradny A.A., Al Farawati R.K., Al Zobidi M.I., Khan S.U.M., Photocatalytic Removal of Polychlorinated Biphenyls (PCBs) Using Carbon-Modified Titanium Oxide Nanoparticles, Appl. Surf. Sci., 365: 108–113 (2016).
[3] Tang T., Zheng Z., Wang R., Huang K., Li H., Tao X., Dang Z., Yin H., Lu G., Photodegradation Behaviors of Polychlorinated Biphenyls in Methanol by UV-Irradiation: Solvent Adducts and Sigmatropic Arrangement, Chemosphere., 193: 861–868 (2018).
[6] Bilal M., Ambreen B., Ali J., Shahid I., Adnan M., Hassan  S., Ullah Khan  A., Effects of Solvent on the Structure and Properties of Titanium Dioxide Nanoparticles and Their Antibacterial Activity, Iran. J. Chem. Chem. Eng. (IJCCE), 38(4): 261-272 (2019).
[7] Janitabar Darzi S., Abdolmohammadi S., Latifi M., Green Removal of Toxic Th(IV) by Amino-Functionalized Mesoporous TiO2-SiO2 Nanocomposite, Iran. J. Chem. Chem. Eng. (IJCCE), 39(2): 189-200 (2020).
[8] Shi H., Magaye R., Castranova V., Zhao J., Titanium Dioxide Nanoparticles: A Review of Current Toxicological Data, Part. Fibre Toxicol., 10: 1-15 (2013).
[9] Konstantinou I.K., Albanis T.A., TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review, Appl. Catal. B Environ., 49(1): 1–14 (2004).
[12] Zeng J., Peng C., Wang X., Wang R., Zhang N., Xiong S., One-Pot Self-Assembled TiO2 /Graphene/Poly(acrylamide) Superporous Hybrid For Photocatalytic Degradation of Organic Pollutants, J. Appl. Polym. Sci., 136(5): 47033 (2019).
[14] Lee H., Shin M., Lee M., Hwang Y.J., Photo-Oxidation Activities on Pd-Doped TiO2 Nanoparticles: Critical PdO Formation Effect, Appl. Catal. B Environ., 165: 20–26 (2015).
[15] Akple M.S., Low J., Qin Z., Wageh S., Al-Ghamdi A.A., Yu J., Liu S., Nitrogen-Doped TiO2 Microsheets With Enhanced Visible Light Photocatalytic Activity for CO2 Reduction, Chinese J. Catal., 36(12): 2127–2134 (2015).
[16] Mobtaker H.G., Malekinejad A., Yousefi T., Aghayan H., Studying the Photocatalytic Degradation of tri-n-butyl Phosphate Using Nano Nd-Doped TiO2, J. Sci. Islam. Repub. Iran., 28(1): 79–85 (2017).
[17] Mazur M., Wojcieszak D., Kaczmarek D., Domaradzki J., Zatryb G., Misiewicz J., Morgiel J., Effect of the Nanocrystalline Structure Type on the Optical Properties of TiO2:Nd (1 at.%) Thin Films, Opt. Mater. (Amst)., 42: 423–429 (2015).
[19] Yurdakal S., Tek B.S., Değirmenci Ç., Palmisano G., Selective Photocatalytic Oxidation of Aromatic Alcohols in Solar-Irradiated Aqueous Suspensions of Pt, Au, Pd and Ag loaded TiO2 Catalysts, Catal. Today., 281: 53–59 (2017).
[20] Ou H.H., Lo S.L., Effect of Pt/Pd-Doped TiO2 on the Photocatalytic Degradation of Trichloroethylene, J. Mol. Catal. A Chem., 275(1–2): 200–205 (2007).
[21] Zhang L., Yao Q., Ma Y., Sun B., Shao C., Zhou T., Wang Y., Selim F. A., Wong C.P., Chen H., Taguchi Method Assisted Multiple Effects Optimization on Optical and Luminescence Performance of Ce: YAG Transparent Ceramics for High Power White LEDs, J. Mater. Chem. C., 7: 11431-11440 (2019).
[22] Kojima Y., Fukui M., Tanaka A., Hashimoto K., Kominami H., Additive-Free Semihydrogenation of an Alkynyl Group to an Alkenyl Group over Pd−TiO2 Photocatalyst Utilizing Temporary In-situ Deactivation, ChemCatChem., 10(16): 3605-3611 (2018).
[24] Palukuru  P., Devangam A. V., Behara  D. N., S-Codoped TiO2/Fe2O3 Heterostructure Assemblies for Electrochemical Degradation of Crystal Violet Dye, Iran. J. Chem. Chem. Eng. (IJCCE), 39(2): 169-177 (2020).
[25] Li L., Chang W., Wang Y., Ji H., Chen C., Ma W., Zhao J., Rapid, Photocatalytic, And Deep Debromination Of Polybrominated Diphenyl Ethers on Pd-TiO2: Intermediates and Pathways, Chem. - A Eur. J., 20(35): 11163–11170 (2014).
[26] Aberoomand Azar P., Moradi S., Piramoon S., Mashinchian A., Photocatalytic Degradation of Diazinon from Marine Source Using TiO2 / SiO2 Thin Layer Coated on Glass, Int. J. Mar. Sci. Eng., 1(1): 23–28 (2011).
 [27] Rahmani M., Kaykhaii M., Sasani M., Application of Taguchi L16 Design Method for Comparative Study of Ability of 3A Zeolite in Removal of Rhodamine B and Malachite Green from Environmental Water Samples, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 188: 164–169 (2018).
[28] Sardar S., Karmakar S.K., Das D., Evaluation of Abrasive Wear Resistance of Al2O3/7075 Composite by Taguchi Experimental Design Technique, Trans. Indian Inst. Met., 71(8): 1847–1858 (2018).
[29] Sojić D.V., Despotović V.N., Abazović N.D., Comor M.I., Abramović B.F., Photocatalytic Degradation of Selected Herbicides in Aqueous Suspensions of Doped Titania Under Visible Light Irradiation, J. Hazard. Mater., 179(1-3): 49–56 (2010).
[30] Kuvarega A.T., Krause R.W.M., Mamba B.B., Nitrogen/Palladium-Codoped TiO2 for Efficient Visible Light Photocatalytic Dye Degradation, J. Phys. Chem. C., 115(45): 22110–22120 (2011).
[31] Li J., Liu T., Sui G., Zhen D., Photocatalytic Performance of a Nd–SiO2–TiO2 Nanocomposite for Degradation of Rhodamine B Dye Wastewater, J. Nanosci. Nanotechnol., 15(2): 1408–1415 (2015).
[33] Zangiabadi M., Shamspur T., Saljooqi A., Mostafavi A., Evaluating the Efficiency of the GO-Fe3O4/TiO2 Mesoporous Photocatalyst for Degradation of Chlorpyrifos Pesticide under Visible Light Irradiation, Appl. Organomet. Chem., 33(5): e4813 (2019).
[34] Ding R.C., Fan Y.Z., Wang G.S., High Efficient Cu2O/TiO2 Nanocomposite Photocatalyst to Degrade Organic Pollutant under Visible Light Irradiation, ChemistrySelect., 3(6): 1682–1687 (2018).
[35] Wang C., Zhan Y., Wang Z., TiO2, MoS2, and TiO2/MoS2 Heterostructures for Use in Organic Dyes Degradation, ChemistrySelect., 3(6): 1713–1718 (2018).
[36] Daneshvar N., Aber S., Dorraji M.S.S., Khataee A.R., Rasoulifard M.H., Photocatalytic degradation of the Insecticide Diazinon in the Presence of Prepared Nanocrystalline ZnO Powders under Irradiation of UV-C Light, Sep. Purif. Technol., 58(1): 91–98 (2007).
[37] Piramoon S., Aberoomand Azar P., Saber Tehrani M., Mohammadiazar S., Tavassoli A., Solid-Phase Nanoextraction of Polychlorinated Biphenyls in Water and Their Determination by Gas Chromatography with Electron Capture Detector, J. Sep. Sci., 40(2): 449-457 (2017).
[38] Taha M.R., Mobasser S., Adsorption of DDT and PCB by Nanomaterials from Residual Soil, PLoS ONE., 10(12): 1–16 (2015).
[39] Huang I.W., Hong C.S., Bush B., Photocatalytic Degradation of PCBs in TiO2 Aqueous Suspensions, Chemosphere., 32(9): 1869–1881 (1996).