Optimization of Carbon Dioxide Capture Process Parameters in Sodium Metaborate Solution

Document Type : Research Article


Department of Chemical Engineering, Kocaeli University, 41380, Kocaeli, TURKEY


In this study, parameters affecting the carbonation reaction of carbon dioxide with sodium metaborate solutions were determined and optimized for a variety of process conditions. These parameters include reaction temperature, sodium metaborate concentration, carbon dioxide flow rate, and sodium metaborate/sodium hydroxide molar ratio. Two experimental designs were created for the carbonation reaction with different parametric ranges based on the solubility of the reactants. One of the designs contains high solubility of carbon dioxide and the other has high solubility of sodium metaborate.  The modeling results exhibit a good agreement with the experimental values for the low-temperature design. The modeled conditions exhibit an optimal reaction temperature of 24.0±1.0 oC, a carbon dioxide flow rate of 300±10 mL/min, and a molar ratio of 1.23±0.03 mol NaBO2/mol NaOH. The design conditions show that the rate of carbon dioxide consumption is 0.80 mol CO2/min at optimum, which is coherent with the experimental mean value of 0.77 mol CO2/min.


Main Subjects

[1] Abdelaziz E.A., Saidur R., Mekhilef S., A Review on Energy Saving Strategies in İndustrial Sector, Renew. Sustain. Energy Rev., 15: 150–168 (2011).
[2] Pérez-Lombard L., Ortiz J., Pout C., A Review on Buildings Energy Consumption İnformation, Energy Build, 40: 394–398 (2008).
[3] Afshari F., Afshari H., Afshari F., Ghasemi Zavaragh H., The Effects of Nanofilter and Nanoclay on Reducing Pollutant Emissions from Rapeseed Biodiesel in a Diesel Engine, Waste and Biomass Valorization. (2018).
[4] Holladay J.D., Hu J., King D.L., Wang Y., An Overview of Hydrogen Production Technologies, Catal. Today., 139: 244–260 (2009).
[5] Marbán G., Valdés-Solís T., Towards the Hydrogen Economy? , Int. J. Hydrogen Energy., 32: 1625–1637 (2007).
[6] Wang Y., Shen Y., Qi K., Cao Z., Zhang K., Wu S., Nanostructured Cobalt-Phosphorous Catalysts for Hydrogen Generation from Hydrolysis of Sodium Borohydride Solution, Renew. Energy, 89: 285–294 (2016).
[7] Xu D., Dai P., Guo Q., Yue X., Improved Hydrogen Generation from Alkaline NaBH4 Solution Using Cobalt Catalysts Supported on Modified Activated Carbon, Int. J. Hydrogen Energy, 33: 7371–7377 (2008).
[8] Xu D., Zhang H., Ye W., Hydrogen Generation from Hydrolysis of Alkaline Sodium Borohydride Solution Using Pt/C Catalyst, Catal. Commun., 8: 1767–1771 (2007).
[9] IPCC, Global Warming of 1.5°C. An IPCC Special Report on the İmpacts of Global Warming of 1.5°C Above Pre-İndustrial Levels and Related Global Greenhouse Gas Emission Pathways, İn the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty [Masson-Delmotte V., Zhai P., Pörtner H. O., Roberts D., Skea J., Shukla P.R., Pirani A., Moufouma-Okia W., Péan, R. Pidcock C., Connors S., Matthews J. B. R., Chen Y., Zhou X., Gomis M. I., Lonnoy E., Maycock T., Tignor M., Waterfield T. (eds.)] (2018).
[10] Olivares-Marín M., Maroto-Valer M.M., Development of Adsorbents for CO2 Capture from Waste Materials: A Review, Greenh. Gases Sci. Technol., (2012).
[11] Costa G., Baciocchi R., Polettini A., Pomi R., Hills C.D., Carey P.J., Current Status And Perspectives of Accelerated Carbonation Processes on Municipal Waste Combustion Residues, Environ. Monit. Assess., 135: 55–75 (2007).
[12] Montes-Hernandez G., Pommerol A., Renard F., Beck P., Quirico E., Brissaud O., In Situ Kinetic Measurements of Gas-Solid Carbonation of Ca(OH)2 by Using an İnfrared Microscope Coupled to a Reaction Cell, Chem. Eng. J., 161: 250–256 (2010).
[13] Zhang R., Panesar D.K., Water Absorption of Carbonated Reactive MgO Concrete and İts Correlation with the Pore Structure, J. CO2 Util., 24: 350–360 (2018).
[14] Salaudeen S.A., Acharya B., Dutta A., CaO-Based CO2 Sorbents: A Review on Screening, Enhancement, Cyclic Stability, Regeneration and Kinetics Modelling, J. CO2 Util., 23: 179–199 (2018).
[17] Vinoba M., Bhagiyalakshmi M., Grace A.N., Chu D.H., Nam S.C., Yoon Y., Yoon S.H., Jeong S.K., CO2 Absorption and Sequestration as Various Polymorphs of CaCO3 Using Sterically Hindered Amine , Langmuir, 29: 15655–15663 (2013).
[18] Hasib-ur-Rahman M., Siaj M., Larachi F., Ionic Liquids for CO2 Capture-Development and Progress, Chem. Eng. Process. Process Intensif., 49: 313–322(2010).
[19] Ramdin M., De Loos T.W., Vlugt T.J.H., State-of-the-Art of CO2 Capture with İonic Liquids , Ind. Eng. Chem. Res., 51: 8149–8177 (2012).
[20] Pan S.Y., Chang E.E., Chiang P.C., CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on İts Principles and Applications, Aerosol Air Qual. Res., 12: 770–791 (2012).
[21] Kibar M.E., Özcan O., Dusova-Teke Y., Yonel-Gumruk E., Akin A.N., Optimization, Modeling and Characterization of Sol-Gel Process Parameters for the Synthesis of Nanostructured Boron Doped Alumina Catalyst Supports, Microporous Mesoporous Mater., 229: (2016).
[22] Bezerra M.A., Santelli R.E., Oliveira E.P., Villar L.S., Escaleira L.A., Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry, Talanta., 76: 965–977 (2008).
[23] Saeidi M., Ghaemi A., Tahvildari K., CO2 Capture Exploration on Potassium Hydroxide Employing Response Surface Methodology, Isotherm and Kinetic Models, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(5): 255-267 (2019).
[24] Park E.H., Jeong S.U., Jung U.H., Kim S.H., Lee J., Nam S.W, Lim T.H., Park Y.J., Yu Y.H., Recycling of Sodium Metaborate to Borax, Int. J. Hydrogen Energy., 32: 2982–2987 (2007).
[25] Marrero-Alfonso E.Y., Beaird A.M., Davis T. A., Matthews M. A., Hydrogen Generation From Chemical Hydrides, Ind. Eng. Chem. Res., 48: 3703–3712 (2009).
[26] Li Z.P., Liu B.H., Arai K., Morigazaki N., Suda S., Protide Compounds İn Hydrogen Storage Systems, J. Alloys Compd., 356-357: 469–474 (2003).
[27] Kojima Y., Suzuki K., Fukumoto K., Sasaki M., Yamamoto T., Kawai Y., Hayashi H., Hydrogen Generation Using Sodium Borohydride Solution and Metal Catalyst Coated on Metal Oxide, Int. J. Hydrogen Energy., 27: 1029–1034 (2002).
[28] Kibar M.E., Akın A.N., A Novel Process for CO2 Capture By Using Sodium Metaborate. Part I: Effects of Calcination, Environ. Sci. Pollut. Res., 25: 3446–3457 (2018).
[29] Uysal D., Dogan M., Uysal B.Z., Kinetics of Absorption of Carbon Dioxide into Sodium Metaborate Solution, Int. J. Chem. Kinet., 49: 377–386 (2017).
[30] Sarı Yılmaz M., Kantürk Figen A., Pişkin S., Production of Sodium Metaborate Tetrahydrate (NaB(OH)4·2H2O) Using Ultrasonic İrradiation, Powder Technol., 215–216: 166–173 (2012).
[31] Carroll J.J., Slupsky J.D., Mather A.E., The Solubility of Carbon Dioxide in Water at Low Pressure, J. Phys. Chem. Ref. Data., 20: 1201–1209 (1991).
[32] Kemmitt T., Gainsford G.J., Regeneration of Sodium Borohydride from Sodium Metaborate, and İsolation of İntermediate Compounds, Int. J. Hydrogen Energy., 34: 5726–5731 (2009).
[33] Kibar M.E., Development of a Novel Process for Carbon Dioxide Fixation, Kocaeli University, (2016).