Anodic Oxidation of Methylene Blue Dye from Aqueous Solution Using SnO2 Electrode

Document Type : Research Article


1 Laboratory of Materials & Environmental Science, Chemistry Department, Ibn Zohr University, Agadir, MOROCCO

2 Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology Topi, 23460, KPK, PAKISTAN

3 Team Innovation and Development in Engineering Food, Laboratory for Sustainable Innovation and Applied Research (LIDRA), International University of Agadir, Universiapolis, Agadir, MOROCCO

4 Chernivtsi National University, 58012, Kotsyubyns’ky Str, 2, Chernivtsi, UKRAINE


This study was performed to investigate the electrochemical oxidation of a solution containing methylene blue dye by using a tin oxide (SnO2) electrode. The effect of several operating factors such as electrolyte types, current density, initial dye concentration, and pH were investigated by following the discolorationand COD removal. The results show that the maximum color was removed by using chloride supporting electrolyte (i.e. KCl and NaCl) indicating that the indirect oxidation was promoted by the strong oxidant species (i.e. Cl2 and ClO) generated at the anode surface. The best experimental conditions were attained for i = 60mA/cm2, 1% KCl and pH = 3, in which 100% of color was removed after 30 minutes and the COD removal reached 80.9% after 120 min. These results reveal that the anodic oxidation technique using SnO2 electrode could be used to remove the methylene blue dye from textile wastewater.


Main Subjects

[1] Arora, S., Textile Dyes: It's Impact on Environment and its Treatment, J. Bioremed. Biodeg., 5(3): 1 -(2014).
[2] Chequer F.M.D., Gisele Augusto Rodrigues de Oliveira G.A.R., Ferraz E.R.A., Juliano Carvalho Cardoso J.C., Zanoni M.V.B., Danielle Palma de Oliveira D.P., Textile Dyes: Dyeing Process and Environmental Impact, in Eco-Friendly Textile Dyeing and Finishing., InTech.,  (2013).
[4] Slokar, Y.M., Le Marechal A.M., Methods of Decoloration of Textile Wastewaters, Dyes. Pigm., 37(4): 335-356 (1998).
[5] Martinez-Huitle C.A., Ferro S., Electrochemical Oxidation of Organic Pollutants for the Wastewater Treatment: Direct and Indirect Processes, Chem. Soc. Rev., 35(12): 1324-1340 (2006).
[6] Martínez-Huitle C.A., Brillas E., Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: A General Review, Appl. Catal. B-Environ., 87(3): 105-145 (2009).
[7] Hussain S., Saima G., Steter R., Douglas W.M., Motheo A.J., Route of Electrochemical Oxidation of the Antibiotic Sulfamethoxazole on a Mixed Oxide Anode, Environ. Sci. Pollut. Res.. 22(19): 15004-15015 (2015).
[8] Alizadeh M., Ghahramaniet E., Zarrabi M., Hashemi S., Efficient De-Colorization of Methylene Blue by Electro-Coagulation Method: Comparison of Iron and Aluminum Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1): 39-47 (2015).
[10] Solano A.M.S., Martínez-Huitle C.A., Garcia-Segura S., El-Ghenymy A., Brillas E., Application of Electrochemical Advanced Oxidation Processes with a Boron-Doped Diamond Anode to Degrade Acidic Solutions of Reactive Blue 15 (Turqueoise Blue) Dye, Electrochim. Acta., 197: 210-220 (2016).
[11] Zhao H., Chen Y., Peng Q., Wang Q., Zhao G., Catalytic Activity of MOF (2Fe/Co)/Carbon Aerogel for Improving H2O2 and OH Generation in Solar Photo–Electro–Fenton Process, App.l Catal. B-Environ., 203: 127-137 (2017).
[13] Chen G., Electrochemical Technologies in Wastewater Treatment, Sep. Purif. Technol., 38(1): 11-41(2004).
[14] Sirés I., Brillaset E., Oturan M.A., Rodrigo M.A., Panizza M., Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review, Environ. Sci. Pollut. Res., 21(14): 8336-8367 (2014).
[15] Panizza, M. and G. Cerisola, Direct and Mediated Anodic Oxidation of Organic Pollutants, Chem. Rev., 109(12): 6541-6569 (2009).
[16] Hachami F., Errami M., Bazzi L., Hilali M., Salghi R., Jodeh S., Hammouti B., Hamed OA., A Comparative Study of Electrochemical Oxidation of Methidation Organophosphorous Pesticide on SnO2 and Boron-Doped Diamond Anodes, Chemi. Cent. J., 9(1): 59- (2015).
[17] Cañizares P., Gadri A.,  Lobato J., Nasr B., Paz R., Rodrigo M.A., Saez C., Electrochemical Oxidation of Azoic Dyes with Conductive-Diamond Anodes, Ind. Eng. Chem.  Re.s. 45(10): 3468-3473 (2006).
[18] Panizza M., Cerisola G., Electro-Fenton Degradation of Synthetic Dyes, Water. Res., 43(2): 339-344 (2009).
[20] Malpass G.R., Miwa D.W., Machado S.A.S., Motheo A.J., SnO2-Based Materials for Pesticide Degradation,
J. Hazar. Mater., 180(1): 145-151 (2010).
[21] Gonçalves M.R., Marques I., Correia J., Electrochemical Mineralization of Anaerobically Digested Olive Mill Wastewater, Water. Res., 46(13): 4217-4225 (2012).
[22] Johnson D., Feng J., Houk L., Direct Electrochemical Degradation of Organic Wastes in Aqueous Media, Electrochim. Acta., 46(2-3): 323-330 (2000).
[23] Del Río A. I., Fernández J., Molina J., Bonastre J., Cases F., Electrochemical Treatment of a Synthetic Wastewater Containing a Sulphonated azo Dye. Determination of Naphthalenesulphonic Compounds Produced as Main by-Products, Desalination, 273(2): 428-435 (2011).
[24] Baddouh A., Bessegato G.G., Rguiti M.M., El Ibrahimi B., Bazzi L., Hilali M., Zanoni M.V.B.,   Electrochemical Decolorization of Rhodamine B Dye: Influence of Anode Material, Chloride Concentration and Current Density, Appl. J. Envir. Eng., 6(2): 2041-2047 (2018).
[25] Zhao G., Cui X., Liu M., Li P., Zhang Y., Cao T., Li H., Lei Y., Liu L.,  Li D., Electrochemical Degradation of Refractory Pollutant Using a Novel Microstructured TiO2 Nanotubes/Sb-Doped SnO2 Electrode, J. Electroanal. Chem., 43(5): 1480-1486 (2009).
[26] Baddouh A., Rguiti M. M., Mohamed E., El Ibrahimi B., Bazzi L., Hilali M., Electrochemical Degradation  of Thiabendazole Fungicide by Anodic Oxidation  on the Tin Oxide Electrode (SnO2), Appl. J. Envir. Eng. Sci., 3(3): 213-221 (2017).
[27] Rguiti M.M., Baddouh A., Elmouaden K., Bazzi L.H., Hilali M., Bazzi, L., Electrochemical Oxidation of Olive Mill Waste Waters on Tin Oxide ElectrodeJ. Mater. Environ. Sci., 9(2): 551-558 (2018).
[28] Rguiti M.M., Baddouh A., Amaterz E., EL Asbahani A., Bazzi L.H., Hilali M., Bazzi L., Electrodegradation Study of Phenolic Compounds Containing in Olive Mill Wastewaters of the Chiadma Region, Int. J. Curr. Res., 10(3): 67388-67395 (2018).
[29] Faraji H., Mohamadi A.A., Arezomand S., Reza H., Mahvi A.H., Kinetics and Equilibrium Studies of the Removal of Blue Basic 41 and Methylene Blue from Aqueous Solution Using Rice Stems, Iran. J. Chem. Chem. Eng. (IJCCE), 34(3): 33-42 (2015).
[31] Tammina S.K., Mandal B.K., Kadiyala N.K., Photocatalytic Degradation of Methylene Blue Dye by Nonconventional synthesized SnO2 Nanoparticles, Environ. Nanotechnol. Monit. Manage., 10: 339-350 (2018).
[32] Vasconcelos V.M., Ponce-de-León C., Nava J.L., Lanza, M.R., Electrochemical Degradation of RB-5 Dye by Anodic Oxidation, Electro-Fenton and by Combining Anodic Oxidation–Electro-Fenton in a Filter-Press Flow Cell, J. Electroanal. Chem., 765: 179-187 (2016).
[33] De Moura D. C., De Araújo C. K. C., Zanta C.L., Salazar R., Martínez-Huitle, C. A., Active Chlorine Species Electrogenerated on Ti/Ru 0.3 Ti 0.7 O2 Surface: Electrochemical Behavior, Concentration Determination and Their Application, J. Electroanal. Chem., 731: 145-152 (2014).
[34] Chen S., Zheng Y., Wang S., Chen, X., Ti/RuO2–Sb2O5–SnO2 Electrodes  for Chlorine Evolution from Seawater, Chem. Eng. J., 172(1): 47-51 (2011).
[36] Malpass G. R., Miwa D. W., Santos R.L., Vieira E. M., Motheo A.J., Unexpected Toxicity Decrease During Photoelectrochemical Degradation of Atrazine with NaCl, Environ. Chem. Lett., 10(2): 177-182 (2012).
[38] Panizza M., Michaud P.A., Cerisola G., Comninellis C., Anodic Oxidation of 2-Naphthol at Boron-Doped Diamond Electrodes, J. Electroanal. Chem.. 507(1-2): 206-214 (2001).
[39] Chen T.-S., Chen P.-H., Huang K.-L., Electrochemical Degradation of N, N-diethyl-m-Toluamide on a Boron-Doped Diamond Electrode, J. Taiwan. Inst. Chem. Eng., 45(5): 2615-2621 (2014).
[40] Dai Q., Zhou J., Meng X., Feng D., Wu C., Chen, J., Electrochemical Oxidation of Cinnamic Acid with Mo Modified PbO2 Electrode: Electrode Characterization, Kinetics and Degradation Pathway, Chem. Eng. J., 289: 239-246 (2016).
[41] Fabiańska A., Białk-Bielińska A., Stepnowski P., Stolte S., Siedlecka E.M., Electrochemical Degradation of Sulfonamides at BDD Electrode: Kinetics, Reaction Pathway and Eco-Toxicity Evaluation, J. Hazard. Mater., 280: 579-587 (2014).
[43] Alves P.A., Malpass G.R.P., Johansen H.D., Azevedo E.B., Gomes L.M., Vilela W.F.D., Motheo A.D.J., Photo-Assisted Electrochemical Degradation of Real Textile Wastewater, Water. Sci. Technol., 61(2): 491-498. (2010).