Polypyrrole/Silver Nanocomposite: Synthesis, Characterization and Antibacterial Activity

Document Type : Research Article


1 Babol Noshirvani University of Technology, P.O. Box 484, Babol, I.R. IRAN

2 Shomal University, P.O. Box 731, Amol, I.R. IRAN

3 Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, I.R. IRAN


Polypyrrole/silver (PPy/Ag)nanocomposite was synthesized by a chemical oxidative method. SEM and TEM analyses were performed for studying the morphology of the nanocomposite. It was shown that the obtained nanocomposite particles have a spherical structure with the high surface area to volume ratio that is the important factor in the biological application. The particle sizes of the PPy/Ag were 15–25 nm obtained by TEM. The antibacterial property was assessed by the disk diffusion method against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria. The antibacterial mechanism of action for PPy/Ag nanocomposite was discussed. PPy/Ag showed antibacterial activity against S. aureus (5 ± 0.5 mm) and E. coli (8 ± 0.5 mm). Based on satisfactory antibacterial properties of PPy/Ag nanocomposite, it could be considered as a suitable material in biomedical applications.


Main Subjects

[1] Chandrasekhar P., "Conducting Polymers, Fundamentals, and Applications: a Practical Approach", Springer Science & Business Media, (2013).
[2] Lota K., Lota G., Sierczynska A., Acznik I., Carbon/polypyrrole Composites for Electrochemical Capacitors, Synthetic Metals, 203: 44-48 (2015).
[3] Hasani T., Eisazadeh H., Removal of Cd (II) by Using Polypyrrole and Its Nanocomposites, Synthetic Metals, 175: 15-20 (2013).
[4] Ruhi G., Modi O., Dhawan S., Chitosan-Polypyrrole-SiO2 Composite Coatings with Advanced Anticorrosive Properties, Synthetic Metals, 200: 24-39 (2015).
[5] Uppalapati D., Boyd B.J., Garg S., Travis-Sejdic J., Svirskis D., Conducting Polymers with Defined Micro-or Nanostructures for Drug Delivery, Biomaterials, 111: 149-162 (2016).
[6] Liu J., Zhou W., Lai L., Yang H., Lim S.H., Zhen Y., Yu T., Shen Z., Lin J., Three Dimensional
α-Fe2O3/polypyrrole (Ppy) Nanoarray as an Anode for Micro Lithium-Ion Batteries,
Nano Energy, 2(5): 726-732 (2013).
[7] Lashkenari M.S., Davodi B., Eisazadeh H., Removal of Arsenic from Aqueous Solution Using Polyaniline/Rice Husk Nanocomposite, Korean Journal of Chemical Engineering, 28(7): 1532-1538 (2011).
[8] Lashkenari M.S., Davodi B., Ghorbani M., Eisazadeh H., Use of Core-Shell Polyaniline/Polystyrene Nanocomposite for Removal of Cr (VI), High-Performance Polymers, 24(5): 345-355 (2012).
[9] Hyun K., Lee J.H., Yoon C.W., Cho Y.-H., Kim L.-H., Kwon Y., Improvement in Oxygen Reduction Activity of Polypyrrole-Coated PtNi Alloy Catalyst Prepared for Proton Exchange Membrane Fuel Cells, Synthetic Metals, 190: 48-55 (2014).
[10] MansouriTorshizi H., Zareian-Jahromi S., Saeidifar M., Ghasemi A., Ghaemi H., Heydari A., Synthesis, Characterization and in Vitro Antimicrobial Screening of the Xanthate Derivatives and their Iron (II) Complexes, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(5): 43-54 (2017).
[12] Pandey S., Annapoorni S., Malhotra B., Synthesis and Characterization of Poly (aniline-co-o-anisidine). A Processable Conducting Copolymer, Macromolecules, 26(12): 3190-3193 (1993).
[13] Eisazadeh H., Ghorbani M., Copolymerization of Pyrrole and Vinyl Acetate in Aqueous and Aqueous/Nonaqueous Media, Journal of Vinyl and Additive Technology, 15(3): 204-210 (2009).
[14] Kolaei Z.T., Eisazadeh H., Investigation of the Effect of DOP on Polyaniline and olyaniline/Polystyrene Nanocomposites, Polymer-Plastics Technology and Engineering, 50(14): 1438-1442 (2011).
[15] Asaadi N., Parhizkar M., MohammadiAref S., Bidadi H., The Role of Polypyrrole in Electrical Properties of ZnO-Polymer Composite Varistors, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(3): 65-72 (2017).
[16] Yousefi N., Pazouki M., AlikhaniHesari F., Alizadeh M., Statistical Evaluation of the Pertinent Parameters in Bio-synthesis of Ag/MWf-CNT Composites Using Plackett-Burman Design and Response Surface Methodology, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 35(2): 51-62 (2016).
[17] Lemire J.A., Harrison J.J., Turner R.J., Antimicrobial Activity of Metals: Mechanisms, Molecular Targets, and Applications, Nature Reviews Microbiology, 11(6): 371-384 (2013).
[18] Vinod Kumar V., Anbarasan S., Christena L.R., SaiSubramanian N., Philip Anthony S., Bio-Functionalized Silver Nanoparticles for Selective Colorimetric Sensing of Toxic Metal Ions and Antimicrobial Studies, Spectrochim. Acta. A: Molecular and Biomolecular Spectroscopy, 129: 35-42 (2014).
[19] Horike S., Umeyama D., Kitagawa S., Ion Conductivity and Transport by Porous Coordination Polymers and Metal-Organic Frameworks, Accounts of Chemical Research, 46(11): 2376-2384 (2013).
 [20] Alekseeva E., Bober P., Trchová M., Šeděnková I., Prokeš J., Stejskal J., The Composites of Silver with Globular or Nanotubularpolypyrrole: The Control of Silver Content, Synthetic Metals, 209: 105-111 (2015).
[21] Lashkenari M.S., Eisazadeh H., Rahimnejad M., Chemical Synthesis and Characterization of Novel Antibacterial Polycyclic Polymer, Polycyclic Aromatic Compounds, 34(5): 620-631 (2014).
[22] Babu K.F., Dhandapani P., Maruthamuthu S., Kulandainathan M.A., One-Pot Synthesis of Polypyrrole Silver Nanocomposite on Cotton Fabrics for the Multifunctional Property, Carbohydrate Polymers, 90(4): 1557-1563 (2012).
[23] Tang J., Song Y., Tanvir S., Anderson W.A., Berry R.M., Tam K.C., Polyrhodanine Coated Cellulose Nanocrystals: A Sustainable Antimicrobial Agent, ACS Sustainable Chemistry & Engineering, 3(8): 1801-1809 (2015).
[24] Cai Q., Gao Y., Gao T., Lan S., Simalou O., Zhou X., Zhang Y., Harnoode C., Gao G., Dong A., Insight into Biological Effects of Zinc Oxide Nanoflowers on Bacteria: Why Morphology Matters, ACS Applied Materials & Interfaces, 8(16): 10109-10120 (2016).
[25] Bamrungsap S., Zhao Z., Chen T., Wang L., Li C., Fu T., Tan W., Nanotechnology in Therapeutics:
a Focus on Nanoparticles as a Drug Delivery System
, Nanomedicine, 7(8): 1253-1271 (2012).
[26] Timofeeva L., Kleshcheva N., Antimicrobial Polymers: Mechanism of Action, Factors of Activity, and Applications, Applied Microbiology and Biotechnology, 89(3): 475-492 (2011).
[27] Munoz-Bonilla A., Fernandez-Garcia M., Polymeric Materials with Antimicrobial Activity, Progress
in Polymer Science
, 37(2): 281-339 (2012).
[28] Bieser A.M., Tiller J.C., Mechanistic Considerations on Contact-Active Antimicrobial Surfaces with Controlled Functional Group Densities, Macromolecular Bioscience, 11(4): 526-534 (2011).