Adsorption of Fluorescein on Zr-Pillared Montmorillonite Clays: Studied by Time-Resolved Fluorescence Spectroscopy

Document Type : Research Article


Department of Chemistry, Ziane Achour University of Djelfa, BP 3117, ALGERIA


In the present study, the adsorption capacities of two intercalated smectites, Na+-PMt and Ca2+-PMt with the Zr pillar were investigated on fluorescent dye adsorption. The modified clay sample was characterized in detail using X-Ray Diffraction (XRD), and Fourier Transform InfraRed spectroscopy (FT-IR). The values of interlayer spacing are similar about 16 Å for all samples. The adsorption isotherms fit well with the non-linear Langmuir isotherm model and the maximum adsorption capacities of all materials are determined. For all samples interlayer spacing after interactions between the dye and the modified clay are similar about 18 Å as measured by X-ray diffraction. The pillar improves the adoption capacity to wards fluorescein due to its location inside interlayer space. Interestingly, the time-resolved fluorescence shows that the dye is not released in solution as is the case for the pristine clay.


Main Subjects

[1]  Vidhyadevi T., Murugesan A., Kirupha S.D., Baskaralingam P., Ravikumar L., Sivanesan S., Adsorption of Congo Red Dye over Pendent Chlorobenzylidine Rings Present on Polythioamide Resin: Kinetic and Equilibrium Studies, Sep. Sci. Technol. (Philadelphia)., 48(10): 1450–1458 (2013).
[2]  Vidhyadevi T., Murugesan A., Kalaivani S.S., Anil Kumar M., Thiruvenkada Ravi K.V., Ravikumar L., Anuradha C.D., Sivanesan S., Optimization of the Process Parameters for the Removal of Reactive Yellow Dye by the Low Cost Setaria Verticillata Carbon Using Response Surface Methodology: Thermodynamic, Kinetic, and Equilibrium Studies, Environ. Prog. Sustain. Energy., 33(3): 855–865 (2014).
[3]  Jaber M., Georgelin T., Bazzi H., Costa-Torro F., Lambert J.-F., Bolbach G., Clodic G., Selectivities in Adsorption and Peptidic Condensation in the (Arginine and Glutamic Acid)/Montmorillonite Clay System, J. Phys. Chem., C,118(44): 25447–25455 (2014).
[4]  Fournier F., Viguerie L. de, Balme S., Janot J.-M., Walter P., Jaber M., Physico-Chemical Characterization of Lake Pigments Based on Montmorillonite and Carminic Acid, J. Appl. Clay Sci., 130: 12–17 (2016).
[5]  Kamgang-Syapnjeu P., Njoya D., Kamseu E., Cornette de Saint Cyr L., Marcano-Zerpa A., Balme S., Bechelany M., Soussan L., Elaboration of a New Ceramic Membrane Support from Cameroonian Clays, Coconut Husks and Eggshells: Application for Escherichia Coli Bacteria Retention, J. Appl. Clay Sci., 198:105836 (2020).  
[6]  Lepoitevin M., Jaber M., Guégan R., Janot J.-M., Dejardin P., Henn F., Balme S., BSA and Lysozyme Adsorption on Homoionic Montmorillonite: Influence of the Interlayer Cation, J. Appl. Clay Sci., 95: 396–402 (2014).
[7]  Adraa K. El, Georgelin T., Lambert J.-F., Jaber F. , Tielens F. , and Jaber M.,Cysteine-montmorillonite composites for heavy metal cation complexation: A combined experimental and theoretical study, Chem. Eng. J., 314: 406–417(2017).
[8] Vengris T., Binkien R., Sveikauskait A., Nickel, Copper and Zinc Removal From Waste Water by a Modified Clay Sorbent, J. Appl. Clay Sci.,18 (3-4):183–190 (2001).
[9] Liu P., Polymer modified clay minerals: A review, Appl. Clay Sci e.,38 (1-2): 64–76(2007).
[10] Seydibeyoglu M. O. , Demiroglu S. , Atagur M. , and Ocaktan S. Y., Modification of Clay Crystal Structure with Different Alcohols, Nat. Resour. Res.,08 (11):709–715 (2017).
[11]  Krishna B.S., Murty D.S.R., Jai Prakash B.S., Surfactant-Modified Clay as Adsorbent for Chromate,
J. Appl. Clay Sci
.,20(1-2): 65–71 (2001).
[12] Sharma S. K. and Nayak S. K., Surface Modified Clay/Polypropylene (PP) Nanocomposites: Effect on Physico-Mechanical, Thermal and Morphological Properties, Polym. Degrad. Stab.,94(1): 132–138 (2009).
[13] Nguyen-Thanh D., Block K., Bandosz T.J., Adsorption of Hydrogen Sulfide on Montmorillonites Modified with Iron, Chemosphere.,59(3): 343–353 (2005).
[14] Cooper C., Jiang J.-Q., Ouki S., Preliminary Evaluation of Polymeric Fe- and Al-Modified Clays as Adsorbents for Heavy Metal Removal in Water Treatment, J. Chem. Technol. Biotechnol., 77(5): 546–551 (2002).
[15] Molina C.B., Casas J.A., Zazo J.A., Rodríguez J.J., A Comparison of Al-Fe and Zr-Fe Pillared Clays for Catalytic Wet Peroxide Oxidation, Chem. Eng., 118(1-2): 29–35 (2006).
[16]  "Pillared Clays and Related Catalysts", Springer. New York: New York, NY (2010).
[18] Zhu M.-X., Ding K.-Y., Xu S.-H., Jiang X., Adsorption of Phosphate on Hydroxyaluminum- and Hydroxyiron-Montmorillonite Complexes, J. Hazard. Mater., 165(1-3): 645–651 (2009).
[22] Haouzi A., Kharroubi M., Belarbi H., Devautour-Vinot S., Henn F., Giuntini J.C., Activation Energy For Dc Conductivity in Dehydrated Alkali Metal-Exchanged Montmorillonites: Experimental Results and Model, J. Appl. Clay Sci., 27(1-2): 67–74 (2004).
[23] Balme S., Janot J.-M., Déjardin P., Seta P., Highly Efficient Fluorescent Label Unquenched by Protein Interaction to Probe the Avidin Rotational Motion, J. Photochem. Photobiol. A.,184(1-2):, 204–211 (2006).
[24] Bahranowski K., Włodarczyk W., Wisła-Walsh E., Gaweł A., Matusik J., Klimek A., Gil B., Michalik-Zym A., Dula R., Socha R.P., Serwicka E.M., [Ti,Zr]-pillared montmorillonite – A New Quality with Respect to Ti- and Zr-Pillared Clays,
J. Microporous Mesoporous Mater.,202: 155–164 (2015).
[25] Kharroubi M., Balme S., Haouzi A., Belarbi H., Sekou D., Henn F., Interlayer Cation–Water Thermodynamics and Dynamics in Homoionic Alkali and Alkaline-Earth Exchanged Montmorillonites with Low Water Loadings, J. Phys. Chem. C., 116(28): 14970–14978 (2012).
[26]  Ohtsuka K., Hayashi Y., Suda M., Microporous Zirconia-Pillared Clays Derived from Three Kinds of Zirconium Polynuclear Ionic Species, Chem. Mater., 5(12): 1823–1829 (1993).
[28] Kooli F., Yan, L., Tan S.X., Zheng J., Organoclays from Alkaline-Treated Acid-Activated Clays, J. Therm. Anal. Calorimy., 115(2): 1465–1475 (2014).
[29] Lerot L., Effect of Swelling on the Infrared Absorption Spectrum of Montmorillonite, J. Clays Clay Min., 24(4): 191–199 (1976).
[30] Huang Z.-M., Zhang Y.-Z., Kotaki M., Ramakrishna S., A Review on Polymer Nanofibers by Electrospinning and their Applications in Nanocomposites, Compos. Sci. Technol.,63(15): 2223–2253 (2003).
[31] Greiner A., Wendorff J.H., Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers, Angew. Chem,46(30): 5670–5703 (2007).
[32]  Bodoardo S., Chiappetta R., Onida B., Figueras F., Garrone E., Ammonia Interaction and Reaction with Al-Pillared Montmorillonite: An IR Study, J. Microporous Mesoporous Mater., 20(1-3): 187–196 (1998).
[33] Langmuir I., The Adsorption of Gases on Plane Surfaces of Glass, Mica And Platinum, J. Am. Chem. Soc., 40(9): 1361–1403 (1918).
[34] Freundlich H.M.F., Over the Adsorption in Solution, The Journal of Physical Chemistry, 57: 385-471(1906).
[35]  Benetoli L.O. de B. , Santana H. de , Zaia C.T.B.V , Zaia D.A.M., Adsorption of Nucleic Acid Bases on Clays: An Investigation using Langmuir and Freundlich Isotherms and FT-IR Spectroscopy, Monatsh. Chem.,139 (7): 753–761 (2008).
[36] Vidhyadevi T., Arukkani M., Selvaraj K., Periyaraman P.M., Lingam R., Subramanian S., A Study on the Removal of Heavy Metals and Anionic Dyes from Aqueous Solution by Amorphous Polyamide Resin Containing Chlorobenzalimine and Thioamide as Chelating Groups, Korean J. Chem. Eng.,32(4): 650–660 (2015).
[37] Belbel A., Kharroubi M., Janot J.-M., Abdessamad M., Haouzi A., Lefkaier I.K., Balme S., Preparation and Characterization of Homoionic Montmorillonite Modified with Ionic Liquid: Application in Dye Adsorption, Colloids Surf. A Physicochem. Eng. Asp., 558: 219–227 (2018).
[38] Tangaraj V., Janot J.-M., Jaber M., Bechelany M., Balme S., Adsorption and Photophysical Properties of Fluorescent Dyes over Montmorillonite and Saponite Modified by Surfactant, Chemosphere., 184: 1355–1361(2017).
[39] Tangaraj V., Murugesan A., Kalaivani S., Premkumar M.P., Ravikumar L.,Sivanesan S., A Study on the Removal of Heavy Metals and Anionic Dyes from Aqueous Solution bBy Amorphous Polyamide Resin Containing Chlorobenzalimine and Thioamide Aschelating Groups., Korean J. Chem. Eng., 32: 650–660 (2015).
[40] Trigueiro P., Pereira F.A.R., Guillermin D., Rigaud B., Balme S., Janot J.-M., Santos I.M.G. Dos., Fonseca M.G., Walter P., Jaber M., When Anthraquinone Dyes Meet Pillared Montmorillonite: Stability or Fading Upon Exposure to Light?, Dyes Pigm., 159: 384–394 (2018).