Pyrolysis of Coal for Fuel Production: A Review of the Effect of Various Parameters on the Pyrolysis Behavior of Coal

Document Type : Review Article

Authors

1 NFC Institute of Engineering and Fertilizer Research, Faisalabad, PAKISTAN

2 University of Engineering and Technology, Lahore, PAKISTAN

Abstract

Alternative energy and renewable sources received considerable attention  from many researchers because fossil fuel has intermediate products during the conversion of coal. Intermediate products such as synthesis gas, biochar, and condensable vapors are directly influenced by the production of energy to mitigate the barrier to future energy demand. The present review deals with the pyrolysis of coal and the results of pyrolysis of coal investigated by the parameters affecting product distribution such as type of reactor, feedstock composition, temperature, heating rate, particle size, and sweeping gas flow rate. Intermediate products such as charcoal obtained at 300 to 400°C usually the product of a slow pyrolysis process because coal has a large content of un-burnt inorganic compounds in the form of NOX, SOX, and ash, bio-oil depend on volatile matters and obtained at temperature range 410 to 460°C as a product of fast and flash pyrolysis process because of high heating rate but during slow pyrolysis limited fraction obtained, gas formation observed when secondary cracking of coal at a temperature relatively higher to 500°C.  Environmental effects and part of the potential scope of coal pyrolysis-based studies are also discussed in this review. Therefore, in the future utilization of coal will be interesting to optimize the products.

Keywords

Main Subjects


[1] Freitag M., Daniel Q., Pazoki M., Sveinbjornsson K., Zhang J.B., Sun L.C., Hagfeldt A., Boschloo G., High-Efficiency Dye-Sensitized Solar Cells with Molecular Copper Phenanthroline as Solid Hole Conductor, Energy & Environmental Science, 8: 2634–2637 (2015).
[2] Cichosz S., Masek A., Zaborski M., Polymer-based Sensors: A Review, Polymer Testing, 67: 342–348 (2018).
[3] Gao J., Yang Y., Zhang Z., Yan J.Y., Lin Z.H., Guo X.Y., Bifacial Quasi-Solid-State Dye-Sensitized Solar Cells with Poly (Vinyl Pyrrolidone)/Polyaniline Transparent Counter Electrode, Nano Energy, 26: 123–130 (2016).
[4] Lee C.P., Lin C.A., Wei T.C., Tsai M.L., Meng Y.,
Li C.T., Huo K.C., Wu C.I., Lau S.P., He J.H., Economical Low-Light Photovoltaics by Using the Pt-Free Dye-Sensitized Solar Cell with Graphene Dot/PEDOT: PSS Counter Electrodes, Nano Energy, 18: 109–117 (2015).
[5] Jeon S.S., Kim C., Lee T.H., Lee Y.W., Do K., Ko J., Im S.S., Camphorsulfonic Acid-Doped Polyaniline Transparent Counter Electrode for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, 116: 22743–22748 (2012).
[6] Xue Q.F., Hu Z.C., Liu J., Lin J.H., Sun C., Chen Z.M., Duan C.H., Wang J., Liao C., Lau W.M., et al., Highly Efficient Fullerene/Perovskite Planar Heterojunction Solar Cells Via Cathode Modification with an Amino-Functionalized Polymer Interlayer, Journal of Materials Chemistry A, 2(46): 19598–19603 (2014).
[7] Chang C.M., Li W.B., Guo X., Guo B., Ye C.N.,
Su W.Y., Fan Q.P., Zhang M.J., A Narrow-Bandgap Donor Polymer For Highly Efficient As-Cast Non-Fullerene Polymer Solar Cells with a High Open-Circuit Voltage, Organic Electronics, 58: 82–87 (2018).
[8] Razykov T.M., Ferekides C.S., Morel D., Stefanakos E., Ullal H.S., Upadhyaya H.M., Solar Photovoltaic Electricity: Current Status and Future Prospects, Solar Energy, 85: 1580–1608 (2011).
[9] O’regan B., Grätzel M., A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature, 353: 737–740 (1991).
[10] Nazeeruddin M.K., Baranoff E., Grätzel M., Dye-Sensitized Solar Cells: A Brief Overview, Solar Energy, 85: 1172–1178 (2011).
[11] Christian K., Johannes T.M., Ke C., Harald O., Karsten R., Active Discovery of Organic Semiconductors, Nature Communications, 12: 2422 (2021).
[12] Assunta M., Daniela L., Antonio F., Luigi V., Poly(3-hexylthiophene): Synthetic Methodologies and Properties In Bulk Heterojunction Solar Cells, Energy & Environmental Science, 5: 8457-8474 (2012).
[13] Soheil E., Bobak G., Shabnam S., Steven H., Peyman S., Effects of Annealing and Degradation on Regioregular Polythiophene-Based Bulk Heterojunction Organic Photovoltaic Devices, Solar Energy Materials and Solar Cells. 94(12): 2258-2264 (2010).
[14] Fredicha A.N., Agus S., Fahru N.R., Kajian Pengaruh Ketebalan Lapisan P3HT pada Sel Surya Organik Berbasis Bahan Organik dan Polimer. Jurnal Teori dan Aplikasi Fisika, 1(2) (2013). DOI: http://dx.doi.org/10.23960%2Fjtaf.v1i2.967
[16] Alexandre R., M. Cidália R. C., Andreia S.F.F., Manuel O., João P.C. T., Ana V. M., M. Manuela M. R., Loic H., Gabriel B., Thermal Stability of P3HT and P3HT:PCBM Blends in the Molten State, Polymer Testing, 32(7): 1192-1201 (2013).
[17] Petr P.K., Beate B., Andrey E. R., Barry C.T., Optimization and Simplification of Polymer–Fullerene Solar Cells Through Polymer and Active Layer Design, polymer, 54(20): 5267-5298 (2013).
[19] Fitrilawati F., Tuti S., Camellia P., Wulandari P., Rustam E.S., Pengaruh Suhu Konversi Termal Pada Kualitas Film Tipis PPV, Jurnal Fisika Dan Aplikasinya, 1(2) (2005).
[20] Tom A., Peter V., Jef P., Paul H., Polymer Solar Cells: Screen-Printing as a Novel Deposition Technique, MRS Online Proceedings Library, 836: L3.9 (2004).
[22] Takeo O., Syuichi N., Atsushi S., Kenji K., Yasuhiko H., Hironori I., Hayato S., Tetsuo S., Formation and Characterization of Polymer/Fullerene Bulk Heterojunction Solar Cells, Journal of Physics and Chemistry of Solids. 69: 1276-1279 (2008).
[23] Mo Z., Tianhong C., Kody V., Experimental and Theoretical Investigation of MEH-ppv Based Schottky Diodes, Microelectronic Engineering, 75(3): 269-274 (2004).
[24] Nurul Z.Y., Mohamad R., Investigation on the Optical and Surface Morphology of Conjugated Polymer MEH-PPV:ZnO Nanocomposite Thin Films, Journal of Nanomaterials, 2012: 93679 (2012).
 [25] Asif M., Jian Y.H., Bo X., Ailing T., Xiaochen W., Erjun Z., Recent Progress in Porphyrin-Based Materials for Organic Solar Cells, Journal of Materials Chemistry A, 6: 16769-16797 (2018).
[26] Hardeli H., Harry S., Resi K., Riri I.N.H, Solar Cell Polymer Based Active Ingredients PPV and PCBM, IOP Conference Series Materials Science and Engineering, 335(1): 012029 (2018).
[27] Laura M.H., Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits, ACS Energy Letters, 2(7): 1539–1548 (2017).
[28] Sunyoung S., Yoon S.H., Transparent Conductive Oxide (TCO) Film for Organic Light Emissive Device (OLEDs), Organic Light Emitting Diode - Material, Process and Devices, Seung Hwan Ko, IntechOpen (2011).
[29] Hardeli, Harry S., Rahadian Z., Synthesis and Electrical Properties of Zno-ITO and Al-ITO Thin Film by Spin Coating Technique Through Sol-Gel Process, Journal of Chemical and Pharmaceutical Research, 8(8): 915-921 (2016).
[30] Hu Y., Toshihiko J., Hidenori O., Highly Conductive and Transparent Poly(3,4-ethylenedioxythiophene)/ Poly(4-styrenesulfonate) (PEDOT/PSS) Thin Films. Polymer Journal, 41, 1028–1029 (2009).
[31] Frederick C.K., Polymer Photovoltaik: A Practical Approach, United States of America: SPIE (2008).
[33] Serap G., Helmut N., Niyazi S.S., Conjugated Polymer-Based Organic Solar Cell, Chemical Reviews. 107(4): 1324-1338 (2007).
[34] Weihao G. An Overview on P3HT: PCBM, the Most Efficient Organic Solar Cell Material So Far. Solid State Physic II: Spring (2009).
[36] Jean C.B., Organic photovoltaic Cells: History, Principle and Techniques, Journal of the Chilean Chemical Society, 53(3): 1549-1564 (2008).
[37] Akhiruddin M., Mahfuddin Z., Irmansyah, Penggunaan Ekstrak Antosianin Kol Merah Sebagai Fotosensitizer Pada Sel Surya TiO2 Nanokristal Tersensitisasi Dye, Jurnal Makara, Teknologi, 11(2): 78-84 (2007).
[38] Yunzhang L., Yan W., Zhihui F., Yu N., Xiaojun L., Yanwu L., Yanbing H., Temperature-Dependent Morphology Evolution of P3HT:PCBM Blend Solar Cells During Annealing Process, Synthetic Metals, 162: 2039-2046 (2012).
[41] Oyewole D.O., Oyewole O.K., Kushnir K., Shi T., Oyelade O.V., Adeniji S.A., Agyei-Tuffour B., Evans-Lutterodt K., Titova L.V., Soboyejo W.O., Pressure and Thermal Annealing Effects on the Photoconversion Efficiency of Polymer Solar Cells, AIP Advances, 11, 045304 (2021).  DOI: https://doi.org/10.1063/5.0045694
[42] Heejoo K., WonWook S., SangJin M., Effect of Thermal Annealing on the Performance of P3HT/PCBM Polymer Photovoltaic Cells, Journal of the Korean Physical Society, 48(3): 441-445 (2006).
[43] Ayi B., Annisa A., Fitrilawati, Sel-Surya Polimer: State of Art dan Progres Penelitiannya di Universitas Padjajaran. Jurnal Material dan Energi Indonesia. 1(1): 7–14 (2011).
[44] Wei-Ru W., U-Ser J., Chun-Jen S., Kung-Hwa W., Ming-Shin S., Mao-Yuan C., Chun-Yu C., Wen-Bin S., Chiu-Hun S., An-Chung S., Competition between Fullerene Aggregation and poly(3-hexylthiophene) Crystallization Upon Annealing of Bulk Heterojunction Solar Cells, ACS nano, 5(8): 6233–6243 (2011).
[45] Tao Z., Han H., Yunlong Z., Ying-Chi L., Hiroya O., Ken-Tsung W., Russell J. H., Impact of Thermal Annealing on Organic Photovoltaic Cells Using Regioisomeric Donor–Acceptor–Acceptor Molecules, ACS Applied Materials & Interfaces, 9(30): 25418–25425 (2017).
[46] José G.S. et al., Effects of Annealing Temperature on the Performance of Organic Solar Cells Based on Polymer: Non-Fullerene Using V2O5 as HTL, IEEE Journal of the Electron Devices Society, 8: 421-428 (2020).
[47] Agus S., Amrina M., Maya A., Ari H.R., Suyitno, Erlyta S.R., Yofentina, Fahru N., “Fabrication of Organic Solar Cells with Design Blend P3HT: PCBM Variation of Mass Ratio”, IOP Conference Series: Materials Science and Engineering, 10th Joint Conference on Chemistry 8–9 September, Solo, Indonesia, 107: 012050 (2015). DOI: https://doi.org/10.1088/1757-899X/107/1/012050
[48] Yulia, Kusuma D A, Priatmoko S dan Wahyuni S. Elektroda Solar Cell Berbasis Komposit TiO2/SiO2 Sebagai Energi Alternatif Terbarukan Indonesia. Journal of Chemical Science. 1(2): 92-97 (2012).