Measurement of ZnO Atomic Distances under Isothermal and Isobaric Ensembles: A Molecular Dynamics Prediction

Document Type : Research Article


1 IGEE Institute, University M’Hamad Bougara of Boumerdes, Boumerdes, ALGERIA

2 Physics Department, Badji Mokhtar University, Sidi Ammar, Annaba, ALGERIA

3 Chemical Engineering Department, College of Engineering, University of Ha’il, Ha'il, SAUDI ARABIA

4 Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes, TUNISIA

5 Chemical Engineering Department, Faculty of Engineering, University of Blida, Blida, ALGERIA

6 Kırklareli University, Faculty of Science and Arts, Department of Mathematics Şirketinde, TURKEY

7 Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou, Guangdong, P.R. CHINA

8 Zhongshan-Fudan Joint Innovation Center, Zhongshan, Guangdong Province, P.R. CHINA


Zinc Oxide (ZnO) chemical bonds have stayed between covalent and ionic liaisons; this appears in its thermodynamic behavior and the atomic distances under extended pressure and temperature. In this work, the impact of pressure and temperature is focused on the distance between the atoms of unit cell O-O, O-Zn, and Zn-Zn (1458 atoms of O2- and 1458 of Zn2+) under the range of pressure (0-200 GPa) and temperature of range 300-3000K. Molecular Dynamics technique (MDs) and DL_POLY_4 software are employed on the RAVEN Supercomputer of Cardiff University (UK). The interatomic interactions are modeled using Buckingham potential for short-range and Coulomb potential for long-range. This paper calculates and confirms the effect of pressure and temperature on Zn-O bond length which is less than that on Zn-Zn and O-O bonds, the relationship of these lengths, standard error, standard deviation, the mean, the maximum values of the radial distribution function, the percentage of variation, and finally the validity of Buckingham's potential for ionic and covalent chemical liaisons are reported. The obtained results are in the vicinity of available theoretical and experimental data; these results would have great importance in nanotechnology and technology fields, especially in Medicine and Pharmaceutics.


Main Subjects

[1] Zhigang Z., Arunabhiram C., Riadh S., Michihisa K., Hideyuki T., Nozomu H., Akira E., Hiromitsu T., Momoji K., Carlos A.D.C., Theoretical Study on Electronic and Electrical Properties of Nanostructural ZnO, Japan. J. Appl. Phy., 47: 2999-3006 (2008).
[2] Sberveglieri G., Groppelli S., Nelli P., Tintinelli A., Giunta G., A Novel Method for the Preparation of NH3 Sensors based on ZnO-In Thin Films, Sensors Actuators B, 25(3): 588-590 (1995).
[3] Chu X., Jiang D., Djurisic A.B., Leung Y.H., Gas-Sensing Properties of Thick Film based on ZnO Nano-Tetrapods, Chem. Phys. Lett., 401: 426-429 (2005).
[4] Liao L., Lu H.B., Li J.C., He H., Wang D.F., Fu D.J., Liu C., Zhang W.F., Size Dependence of Gas Sensitivity of ZnO Nanorods, J. Phys. Chem. C, 111(5): 1900-1903 (2007).
[5] Tien L.C., Sadik P.W., Norton D.P., Voss L.F., Pearton S.J., Wang H.T., Kang B.S., Ren F., Jun J., Lin J., Hydrogen Sensing at Room Temperature with Pt-Coated ZnO Thin Films Nanorods, Appl. Phys. Lett., 87: 222106 (2005).
[6] Jing L., Wang B., Xin B., Li S., Shi K., Cai W., Fu H., Investigations on the Surface Modification of ZnO Nanoparticle Photocatalyst by Depositing Pd, J. Solid State Chem., 177(11): 4221-4227 (2004).
[7] Rodriguez J.A., Jirsak T., Dvorak J., Sambasivan S., Fischer D., Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and Density Functional Studies on the Formation of NO3, J. Phys. Chem. B, 104(2): 319-328 (2000).
[8] Wan Q., Li Q.H,, Chen Y.J., Wang T.H., He X.L., Li J.P., Lin C.L., Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors, Appl. Phys. Lett., 84: 3654 (2004).
[9] Li Q.H., Liang Y.X., Wan Q., Wang T.H., Oxygen Sensing Characteristics of Individual ZnO Nanowire Transistors, Appl. Phys. Lett., 85(26): 6389 (2004).
[10] Fan Z.Y., Wang D.W., Chang P.C., Tseng W.Y., Lu J.G., ZnO Nanowire Field-Effect Transistor and Oxygen Sensing Property, Appl. Phys. Lett., 85(24): 5923 (2004).
[11] Wan Q., Li Q., Chen H.Y.J., Wang T.H., He X.L., Gao X.G., Li J.P., Positive Temperature Resistance and Humidity Sensing Properties of Cd-doped ZnO Nanowires, Appl. Phys. Lett., 84(16): 3085 (2004).
[12] Zhang Y., Yu K., Jiang D., Zhu Z., Geng H., Luo L., Zinc Oxide Nanorod and Nanowire for Humidity Sensor, Appl. Surf. Sci., 242(1-2): 212-217 (2005).
[13] Kind H., Yan H., Messer B., Law M., Yang P., Nanowire Ultraviolet Photodetectors and Optical Switches, Adv. Mater., 14(2): 158-160 (2002).
[14] Yang P., Yan H., Mao S., Russo R., Johnson J., Saykally R., Morris N., Controlled Growth of ZnO Nanowires and their Optical Properties, Adv. Funct. Mater., 12(5): 323-331 (2002).
[15] Zhang J., Sun L., Pan H., Liao C., Yan C., ZnO Nanowires Fabricated by a Convenient Route, New J. Chem., 26(1): 33-34 (2002).
[16] Yi G., Wang C., Park W., ZnO Nanorods: Synthesis, Characterization and Applications, Semicond. Sci. Technol., 20(4): S22 (2005).
[17] Dong X., Liu F., Xie Y., Shi W.Z. and Ye X., Jiang J.Z., Pressure-Induced Structural Transition of ZnO Nanocrystals Studied with Molecular Dynamics, Comput. Mater. Sci., 65: 450-455 (2012).
[18] Sun X., Chen Q., Chu Y., Wang C., Structural and Thermodynamic Properties of GaN at High Pressures and High Temperatures, Physica B, 368(1-4): 243-250 (2005).
[19] Sun X., Chen Q., Chu Y., Wang C., Properties of MgO at High Pressures: Shell-Model Molecular Dynamics Simulation, Physica B, 370(1-4): 186-194 (2005).
[20] Sun X.W., Chu Y.D., Liu Z.J., Liu Y.X., Wang C.W., Liu W.M., Molecular Dynamics Study on the Structural and Thermodynamic Properties of the Zinc-Blende Phase of GaN at High Pressures and High Temperatures, Acta Phys. Sin., 54(12): 5830-5837 (2005).
[21] Hong Z.H., Fang T.H., Hwang S.F., Atomic-Level Stress and Induced Growth of Wurtzite Zinc Oxide Using Molecular Dynamics Simulation, J. Phys. D, 44(50): 505301 (2011).
[22] Chen Q.F., Cai L.C., Duan S.Q., Chen D.Q., Melting and Grüneisen Parameters of NaCl at High Pressure, Chin. Phys., 13(7): 1091 (2004).
[23] Jiang J.Z., Olsen J.S., Gerward L., Frost D., Rubie D., Peyronneau J., Structural Stability in Nanocrystalline ZnO, J. Europhys. Lett., 50(1): 48-50 (2000).
[24] Decremps F., Pellicer-Pores J., Macro Saitta A., Chervin J.C., Polian A., High-Pressure Raman Spectroscopy Study of Wurtzite ZnO, Phys. Rev. B, 65: 092101 (2002).
[25] Uddin J., Scuseria G.E., Theoretical Study of ZnO Phases using a Screened Hybrid Density Functional, Phys. Rev. B, 74: 245115 (2006).
[26] Jaffe J.E., Harrison N.M., Hess A.C., Ab Initio Study of ZnO (101-bar0) Surface Relaxation, Phys. Rev. B, 49: 11153 (1994).
[27] Kresse G., Dulub O., Diebold U., Competing for Stabilization Mechanism of the Polar ZnO (0 0 0 1)-Zn Surface, Phys. Rev. B, 68: 245409 (2003).
[28] Jaffe J.E., Hess A.C., Hartree-Fock Study of Phase Changes in ZnO at High-Pressure, Phys. Rev. B, 48: 7903 (1993).
[29] Albertson J., Abrahams S.C., Kvick A., Atomic Displacement, Anharmonic Thermal Vibration, Expansivity and Pyroelectric Coefficient Thermal Dependencies in ZnO, Acta Cryst. B, 45(1): 34-40 (1989).
[30] Ahuja R., Fast L., Eriksson O., Wills J.M., Johansson B., Elastic and High-Pressure Properties of ZnO, J. Appl. Phys., 83(12): 8065 (1998).
[31] Serrano J., Romero A.H., Manjon F.J., Lauck R., Cardona M., Rubio A., Pressure Dependence of
the Lattice Dynamics of ZnO; An AB Initio Approach
, Phys. Rev. B, 69:  094306 (2004).
[32] Kohan A. F., Ceder G., Morgan D., Van de Walle C. G., First-Principles Study of Native Point Defects
in ZnO
, Phys. Rev. B, 61: 15019 (2000).
[33] Mujica A., Angel R., Munoz A., Needs R.J., High-Pressure Phase of Group-IV, III-V, and II-VI Compounds, Rev. Mod. Phys., 75(3): 863-912 (2003).
[34] Timoshenko J., Anspoks A., Kalinko A., Kuzmin A., Temperature Dependence of the Local Structure
and Lattice Dynamics of Wurtzite- Type ZnO
, Acta Mater., 79: 194 -202 (2014).
[37] Carasco J., Illas F., Bromley S., Ultralow-Density Nanocage-based Metal-Oxide, Polymorphs, Phys. Rev. Lett., 99(23): 235502 (2007).
[38] Vom F., “Intrinsic Point Defects in Zinc Oxide: Modelling of Structural, Electronic, Thermodynamic and Kinetic Properties”, Ph.D. Thesis, University of Darmstadt, Germany, (2006).
[39] David R., Adri C.T., Daniel S., William A.G., Kersti H., Water Adsorption on Stepped ZnO Surface from MD simulation, Surface Sc., 604(9-10): 741-752 (2010).
[40] Perdew J.P., Burke K., Ernzerhof M., Generalized Gradient Approximation Mode Simple, Phys. Rev. Lett., 77(18): 3865-3868 (1996).
[41] Perdew J.P., Wang Y., Accurate and Simple Analytic Representation of the Electro-Gas Correlation Energy, Phys. Rev. B., 45(23): 13244-13249 (1992).
[42] Charifi Z., Baaziz H., Reshak A.H., Ab-Initio Investigation of Structural, Electronic and Optical Properties for Three Phases of ZnO Compound, Phys. Stat. Sol. B, 244(9): 3154-3167 (2007).
[43] Scheife A., Fuchs F., Furthmuller J., Bechstedt F., First-Principles Study of Ground and Excited-State Properties of MgO, ZnO, and CdO Polymorphous, Phys. Rev. B, 73(24): 245212-245225 (2006).
[44] Seko A,, Oba F., Kuwabara A., Tanaka I., Pressure-Induced Phase Transition in ZnO and ZnO-MgO Pseudobinary System: A First-Principles Lattice Dynamics Study, Phys. Rev. B, 72(2): 024107 (2005).
[45] Mahlaga P.M., Daniel P.J., Computational Study of the Structural Phase of ZnO, Phys. Rev. B, 84(9): 094110 (2011).