Inhibition of Microbial Corrosion by Green Inhibitors: An Overview

Document Type : Review Article

Authors

1 Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, INDIA

2 Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, INDIA

Abstract

Corrosion is a spontaneous process that affects valuable metal products, is dangerous, and causes expensive damage to many industries. There are many kinds of corrosion; among them is microbial corrosion. The effect of Microbiologically Induced Corrosion (MIC) can be explained in three steps: development of biofilm, alterations of the environment of the metal surface, and metal degradation (or corrosion). Common bacteria responsible for inducing MIC are sulfate-reducing bacteria, iron-reducing bacteria, and acid-producing bacteria. Metals and alloys have been treated with corrosion inhibitors to prevent microbiological corrosion. Expensiveness, toxicity, and in certain instances, ineffectiveness of these inorganic inhibitors have shifted the attention towards the organic green inhibitors. These green inhibitors used against corrosion are derived from plant extracts and organic substances. In addition to being ecologically acceptable and environmentally friendly, plant extracts are readily available, inexpensive, and renewable. This review paper explains microbial corrosion in metals and the mechanisms of MIC. In addition, this paper also reviews metal corrosion inhibition, green inhibitors, their types, and the impact of molecular structures on corrosion inhibition.

Keywords

Main Subjects


[1] Xhanari K., Finšgar M., Organic Corrosion Inhibitors For Aluminum and its Alloys in Chloride and Alkaline Solutions: A Review, Arab. J. Chem. 12(8): 4646–4663 (2019).
        https://doi.org/10.1016/j.arabjc.2016.08.009.
        https://doi.org/10.1016/j.heliyon.2019.e01143.
[3] Umoren S.A., Solomon M.M., Obot I.B., Suleiman R.K., A Critical Review on the Recent Studies on Plant Biomaterials as Corrosion Inhibitors for Industrial Metals, J. Ind. Eng. Chem., 76: 91-115 (2019).
        https://doi.org/10.1016/j.jiec.2019.03.057.
[4] Iverson W.P., Microbial Corrosion of Metals, Adv. Appl. Microbiol. 32: 1–36 (1987).
        https://doi.org/10.1016/S0065-2164(08)70077-7.
[5] Makhlouf A.S.H., Botello M.A., "Failure of the Metallic Structures Due to Microbiologically
Induced Corrosion and the Techniques for Protection
", Handb. Mater. Fail. Anal., Elsevier, 1–18 (2018).
    https://doi.org/10.1016/B978-0-08-101928-3.00001-X.
[6] Narenkumar J.,Parthipan P., A. Usha Raja Nanthini, G. Benelli, K. Murugan, A. Rajasekar, Ginger Extract as Green Biocide to Control Microbial Corrosion of Mild steel, 3 Biotech., 7(2): 1-11 (2017).
        https://doi.org/10.1007/s13205-017-0783-9.
[7] Loto C.A., Microbiological Corrosion: Mechanism, Control and Impact—A Review, Int. J. Adv. Manuf. Technol., 92(9): 4241-4252 (2017).
        https://doi.org/10.1007/s00170-017-0494-8.
        https://doi.org/10.1016/j.jbiotec.2017.07.003.
[9] Grengg C., Mittermayr F., Ukrainczyk N., Koraimann G., Kienesberger S., Dietzel M., Advances in Concrete Materials for Sewer Systems Affected by Microbial Induced Concrete Corrosion: A Review, Water Research, 134: 341-352 (2018).
        https://doi.org/10.1016/j.watres.2018.01.043.
[10] Licina G.J., Cubicciotti D., Microbial-Induced Corrosion in Nuclear Power Plant Materials, JOM., 41(12): 341-352 (1989).
        https://doi.org/10.1007/BF03220842.
[11] Permeh S., Reid C., Boan M.E., Lau K., Tansel B., Duncan M., Lasa I., "Microbiological Influenced Corrosion (MIC) in Florida Marine Environment: A Case Study", NACE - Int. Corros. Conf. Ser., (2017).
[12] Vargel C., "Corrosion of Aluminium", Elsevier, (2004).
    https://doi.org/10.1016/B978-0-08-044495-6.X5000-9.
        https://doi.org/10.1016/j.bioactmat.2019.04.003.
        https://doi.org/10.1016/j.molliq.2017.10.097.
[15] Rani B.E.A., Basu B.B.J., Green Inhibitors for Corrosion Protection of Metals And Alloys: An Overview, Int. J. Corros., 2012: 1-15 (2012).
        https://doi.org/10.1155/2012/380217.
[16] Shehata O.S., Korshed L.A., Attia A., Green Corrosion Inhibitors, Past, Present, and Future, Corros. Inhib. Princ. Recent Appl., 121:      (2018).
        https://doi.org/10.5772/intechopen.72753.
[17] Ford T., Mitchell R., "The Ecology of Microbial Corrosion", Springer, Boston, MA, 231–262 (1990).
        https://doi.org/10.1007/978-1-4684-7612-5_6.
[18] Wang J., Xiong F., Liu H., Zhang T., Li Y., Li C., Xia W., Wang H., Liu H., Study of the Corrosion Behavior of Aspergillus Niger on 7075-T6 Aluminum Alloy in a High Salinity Environment, Bioelectrochemistry, 129: 10-17 (2019).
        https://doi.org/10.1016/j.bioelechem.2019.04.020.
[19] Dai X., Wang H., Ju L.K., Cheng G., Cong H., Newby B., Min Z., Corrosion of Aluminum alloy 2024 Caused by Aspergillus Niger, Int. Biodeterior. Biodegrad. 115: 1-10 (2016).
        https://doi.org/10.1016/j.ibiod.2016.07.009.
[20] Jirón-Lazos U., Corvo F., De la Rosa S.C., García-Ochoa E.M., Bastidas D.M., Bastidas J.M., Localized Corrosion of Aluminum Alloy 6061 in the Presence of Aspergillus niger, Int. Biodeterior. Biodegrad. 133: 17-25 (2018).
        https://doi.org/10.1016/j.ibiod.2018.05.007.
[21] Beech I.B., Sunner J.A., Hiraoka K., Microbe-Surface Interactions In Biofouling and Biocorrosion Processes, Int. Microbiol., 8(3): 157-168 (2005).
       https://doi.org/10.2436/im.v8i3.9522.
[22] Rieusset L., Rey M., Muller D., Vacheron J., Gerin F., Dubost A., Comte G., C. Prigent-Combaret, Secondary Metabolites from Plant-Associated Pseudomonas are Overproduced in Biofilm, Microb. Biotechnol. 13(5): 1562-1580 (2020).
       https://doi.org/10.1111/1751-7915.13598.
[23] Telegdi J., Shaban A., László T., Review on the Microbiologically Influenced Corrosion and the Function Of Biofilms, Int. J. Corros. Scale Inhib. 9(1): 1-33 (2020).
        https://doi.org/10.17675/2305-6894-2020-9-1-1.
[24] Nelson V. V., Maria O.T., Mamiè S. V., Maritza P.C., "Microbiologically Influenced Corrosion in Aluminium Alloys 7075 and 2024", Alum. Alloy- Recent Trends Process. Charact. Mech. Behav. Appl. (2017).
        https://doi.org/10.5772/intechopen.70735.
[25] Hagenauer A., Hilpert R., Hack T., Microbiological Investigations of Corrosion Damages in Aircraft, Mater. Corros. Und Korrosion., 45(6): 355–360 (1994).
        https://doi.org/10.1002/maco.19940450606.
[26] Salvarezza R.C., de Mele M.F.L., Videla H.A., Redox Potential and the Microbiological Corrosion of Aluminium and its Alloys in Fuel/Water Systems, Br. Corros. J. 16(3): 162–168 (1981).
        https://doi.org/10.1179/000705981798274959.
[27] Jing L., Jiashen Z., Liming X., The Corrosion Behavior of 70/30 Copper-Zinc Alloy under the Biofilm of Sulfate-Reducing Bacteria, Mater. Corros., 52(11): 833–837 (2001).
        https://doi.org/10.1002/1521-4176(200111)52: 11<833:: AID-MACO833>3.0.CO;2-9.
[28] Jia R., Unsal T., Xu D., Lekbach Y., Gu T., Microbiologically Influenced Corrosion and Current Mitigation Strategies: A State of the Art Review, Int. Biodeterior. Biodegrad., 137: (2019) 42-58.
        https://doi.org/10.1016/j.ibiod.2018.11.007.
[29] Juzeliūnas E., Ramanauskas R., Lugauskas A., Leinartas K., Samulevičienė M., Sudavičius A., Juškėnas R., Microbially Influenced Corrosion of Zinc and Aluminium-Two-Year Subjection to Influence of Aspergillus niger, Corros. Sci., 49(11): 4098–4112 (2007).
        https://doi.org/10.1016/j.corsci.2007.05.004.
[30] San N.O., Nazır H., Dönmez G., The Effect of Aeromonas Eucrenophila on Microbiologically Induced Corrosion of Nickel–Zinc Alloy, Int. Biodeterior. Biodegradation., 80: 34–40 (2013).
        https://doi.org/10.1016/j.ibiod.2012.09.014.
[31] Scotto V., Di Cintio R., Marcenaro G., The Influence of Marine Aerobic Microbial Film on Stainless Steel Corrosion Behaviour, Corros. Sci., 25(3): 185-194 (1985).
        https://doi.org/10.1016/0010-938X(85)90094-0.
[32] Dexter S.C., Gao G.Y., Effect of Seawater Biofilms on Corrosion Potential and Oxygen Reduction of Stainless Steel, Corrosion, 44(10): 717-723 (1988).
        https://doi.org/10.5006/1.3584936.
[33] Song W., Microbial Corrosion of 2205 Duplex Stainless Steel in Oilfield- Produced Water, Int. J. Electrochem. Sci., 13: 675–689 (2018).
        https://doi.org/10.20964/2018.01.54.
[34] Ismail A.I.M., El-Shamy A.M., Engineering Behaviour of Soil Materials on the Corrosion of Mild Steel, Appl. Clay Sci., 42(3-4): 356-362 (2009).
        https://doi.org/10.1016/j.clay.2008.03.003.
[35] Englert G.E., Müller I.L., The Corrosion Behaviour of Mild Steel and Type 304 Stainless Steel in Media from an Anaerobic Biodigestor, Int. Biodeterior. Biodegradation., 37(3-4): 173–180 (1996).
        https://doi.org/10.1016/S0964-8305(96)00019-4.
[36] Ibrahim A., Hawboldt K., Bottaro C., Khan F., Review and Analysis of Microbiologically Influenced Corrosion: The Chemical Environment in Oil and Gas Facilities, Corros. Eng. Sci. Technol., 53(8): 549-563 (2018).
       https://doi.org/10.1080/1478422X.2018.1511326.
[37] Lee W., Characklis W.G., Corrosion of Mild Steel under Anaerobic Biofilm, Corrosion., 49(3): 186-199 (1993).
        https://doi.org/10.5006/1.3316040.
[38] Syrett B.C., Macdonald D.D., Wing S.S., Corrosion Of Copper-Nickel Alloys in Sea Water Polluted with Sulfide and Sulfide Oxidation Products, Corrosion, 35(9): 409-422 (1979).
        https://doi.org/10.5006/0010-9312-35.9.409.
[39] Lavanya M., A Brief Insight into Microbial Corrosion and its Mitigation with Eco-Friendly Inhibitors,
J. Bio- Tribo-Corrosion., 7(3): 1-9 (2021).
        https://doi.org/10.1007/s40735-021-00563-y.
[40] Zhang S.M., Qiu J., Tian F., Guo X.K., Zhang F.Q., Huang Q.F., Corrosion Behavior of Pure Titanium in the Presence of Actinomyces naeslundii, J. Mater. Sci. Mater. Med., 24(5): 1229-1237 (2013).
       https://doi.org/10.1007/s10856-013-4888-3.
[41] Rao T.S., Kora A.J., Anupkumar B., Narasimhan S.V., Feser R., Pitting Corrosion of Titanium by a Freshwater Strain of Sulphate Reducing Bacteria (Desulfovibrio vulgaris), Corros. Sci., 47(5): 1071–1084 (2005).
        https://doi.org/10.1016/j.corsci.2004.07.025.
[42] Kakooei S., Ismail M.C., Ariwahjoedi B., Mechanisms of Microbiologically Influenced Corrosion: A Review, World Appl. Sci. J., 17(4): 524 (2012).
[43] Little B., Wagner P., Mansfeld F., Microbiologically Influenced Corrosion of Metals and Alloys, Int. Mater. Rev., 36(1): 253–272 (1991).
        https://doi.org/10.1179/imr.1991.36.1.253.
[44] Heyer A., D’Souza F., Morales C.F.L., Ferrari G., Mol J.M.C., de Wit J.H.W., Ship Ballast Tanks a Review from Microbial Corrosion and Electrochemical Point of View, Ocean Eng., 70: 188–200 (2013).
        https://doi.org/10.1016/j.oceaneng.2013.05.005.
[45] Zarasvand K.A., Rai V.R., Microorganisms: Induction and inhibition of corrosion in metals, Int. Biodeterior. Biodegradation., 87: 66–74  (2014).
        https://doi.org/10.1016/j.ibiod.2013.10.023.
[46] Iverson W.P., Biological Corrosion, Adv. Corros. Sci. Technol., 1–42 (1972).
        https://doi.org/10.1007/978-1-4615-8255-7_1.
[47] Jensen H.S., Lens P.N.L., Nielsen J.L., Bester K., Nielsen A.H., Hvitved-Jacobsen T., Vollertsen J., Growth Kinetics of Hydrogen Sulfide Oxidizing Bacteria in Corroded Concrete from Sewers, J. Hazard. Mater., 189(3): 685–691 (2011).
        https://doi.org/10.1016/j.jhazmat.2011.03.005.
[48] Dariva C. G. and Galio A. F., Corrosion Inhibitors –Principles, Mechanisms and Applications, Dev. Corros. Prot., 6: 1–161 (2014).
        https://doi.org/10.5772/57255.
[49] Oguzie E.E., Oguzie K.L., Akalezi C.O., Udeze I.O., Ogbulie J.N., Njoku V.O., Natural Products for Materials Protection: Corrosion and Microbial Growth Inhibition Using Capsicum frutescens Biomass Extracts, ACS Sustain. Chem. Eng., 1(2): 214–225 (2013).
        https://doi.org/10.1021/sc300145k.
[50] Bouhlal F., Labjar N., Abdoun F., Mazkour A., Serghini-Idrissi M., El Mahi M., Lotfi E.M., El Hajjaji S., Electrochemical and Thermodynamic Investigation on Corrosion Inhibition of C38 Steel in 1M Hydrochloric Acid Using the Hydro-Alcoholic Extract of Used Coffee Grounds, Int. J. Corros., 2020: 1–14 (2020).
        https://doi.org/10.1155/2020/4045802.
        https://doi.org/10.3390/molecules200916004.
        https://doi.org/10.1371/journal.ppat.1007606.
[53] Awad H.M., EL–Shahed K.Y.I., Aziz R., Sarmidi M.R., El–Enshasy H.A., Antibiotics as Microbial Secondary Metabolites: Production and Application, J. Teknol., 59(1):      (2012).
        https://doi.org/10.11113/jt.v59.1593.
[54] Singh A.K., Chugh B., Saha S.K., Banerjee P., Ebenso E.E., Thakur S., Pani B., Evaluation of Anti-Corrosion Performance of an Expired Semi Synthetic Antibiotic Cefdinir For Mild Steel in 1 M HCl Medium: An Experimental and Theoretical Study, Results in Phys., 14: 102383 (2019).
        https://doi.org/10.1016/j.rinp.2019.102383.
[55] Raja P.B., Sethuraman M.G., Natural Products as Corrosion Inhibitor for Metals In Corrosive Media - A Review, Mater. Lett., 62(1): 113-116 (2008).
        https://doi.org/10.1016/j.matlet.2007.04.079.
[56] Delbianco N., Priano C., Pérez M., Ortega N.F., Plant Extracts as Corrosion Inhibitors: Effect of Lyophilisation, Thinking, 15:  16 (2020).
[57] Zucchi F., Omar I.H., Plant Extracts as Corrosion Inhibitors of Mild Steel in HCl Solutions, Surf. Technol., 24(4): 391–399 (1985).
        https://doi.org/10.1016/0376-4583(85)90057-3.
[58] Mo S., Luo H.Q., Li N.B., Plant Extracts as “Green” Corrosion Inhibitors for Steel in Sulphuric Acid, Chem. Pap., 70(9): 1131–1143 (2016).
        https://doi.org/10.1515/chempap-2016-0055.
        https://doi.org/10.3390/PR8080942.
[60] Verma C., Ebenso E.E., Bahadur I., Quraishi M.A., An Overview on Plant Extracts as Environmental Sustainable and Green Corrosion Inhibitors for Metals and Alloys in Aggressive Corrosive Media,
J. Mol. Liq., 266: 577–590 (2018).
        https://doi.org/10.1016/j.molliq.2018.06.110.
[61] Gece G., Drugs: A Review of Promising Novel Corrosion Inhibitors, Corros. Sci., 53(12): 3873-3898 (2011).
         https://doi.org/10.1016/j.corsci.2011.08.006.
[62] Goni L.K.M.O., Mazumder M. A.J., Green Corrosion Inhibitors, Corros. Inhib., 1-18 (2019).
         https://doi.org/10.5772/intechopen.81376.
[63] Xhanari K., Finšgar M., Knez Hrnčič M., Maver U., Knez Ž., Seiti B., Green Corrosion Inhibitors for Aluminium and its Alloys: A Review, RSC Adv., 7(44): 27299–27330 (2017).
        https://doi.org/10.1039/C7RA03944A.
[64] Verma C., Chauhan D.S., Quraishi M.A., Drugs as Environmentally Benign Corrosion Inhibitors for Ferrous and Nonferrous Materials in Acid Environment: An Overview, J. Mater. Environ. Sci., 8: 4040–4051 (2017).
[65] Ibrahimi B. El, Jmiai A., Bazzi L., El Issami S., Amino Acids and their Derivatives as Corrosion Inhibitors for Metals and Alloys, Arab. J. Chem., 13(1): 740-771 (2020).
        https://doi.org/10.1016/j.arabjc.2017.07.013.
[66] Dehdab M., Shahraki M., Habibi-Khorassani S.M., Theoretical Study of Inhibition Efficiencies of Some Amino Acids on Corrosion of Carbon Steel in Acidic Media: Green Corrosion Inhibitors, Amino Acids, 48(1): 291–306 (2016).
        https://doi.org/10.1007/s00726-015-2090-2.
[67] Parthipan P., Elumalai P., Narenkumar J., Machuca L.L., Murugan K., Karthikeyan O.P., Rajasekar A., Allium Sativum (Garlic Extract) as a Green Corrosion Inhibitor with Biocidal Properties for the Control of MIC in Carbon Steel and Stainless Steel in Oilfield Environments, Int. Biodeterior. Biodegrad., 132: 66-73 (2018).
        https://doi.org/10.1016/j.ibiod.2018.05.005.
[68] Narenkumar J., Ananthaselvam A., Alsalhi M.S., Devanesan S., Kadier A., Kannan M.M., Rajasekar A., Effect of Crude Methanolic Extract of Lawsonia Inermis for Anti-Biofilm on Mild Steel 1010 and Its Effect on Corrosion in a Re-Circulating Wastewater System, J. King Saud Univ.- Sci. 33(8): 101611 (2021).
        https://doi.org/10.1016/j.jksus.2021.101611.
[69] Parthipan P., Narenkumar J., Elumalai P., Preethi P.S., Usha Raja Nanthini A., Agrawal A., Rajasekar A., Neem Extract as a Green Inhibitor for Microbiologically Influenced Corrosion of Carbon steel API 5LX in a Hypersaline Environments, J. Mol. Liq., 240: 121-127 (2017).
        https://doi.org/10.1016/j.molliq.2017.05.059.
[70] Ituen E., Ekemini E., Yuanhua L., Li R., Singh A., Mitigation of Microbial Biodeterioration and Acid Corrosion of Pipework Steel Using Citrus Reticulata Peels Extract Mediated Copper Nanoparticles Composite, Int. Biodeterior. Biodegrad., 149: 104935 (2020).
        https://doi.org/10.1016/j.ibiod.2020.104935.
[71] Kokilaramani S., AlSalhi M.S., Devanesan S., Narenkumar J., Rajasekar A., Govarthanan M., Bacillus megaterium-Induced Biocorrosion on Mild Steel and the Effect of Artemisia Pallens Methanolic Extract as a Natural Corrosion Inhibitor, Arch. Microbiol., 202(8): 2311–2321 (2020).
        https://doi.org/10.1007/s00203-020-01951-7.
[72] Krishnan M., Subramanian H., Dahms H.-U., Sivanandham V., Seeni P., Gopalan S., Mahalingam A., Rathinam A.J., Biogenic Corrosion Inhibitor on Mild Steel Protection in Concentrated HCl Medium, Sci. Rep., 8(1): 2609 (2018).
       https://doi.org/10.1038/s41598-018-20718-1.
[73] Parthipan P., Sabarinathan D., Angaiah S., Rajasekar A., Glycolipid Biosurfactant as an Eco-Friendly Microbial Inhibitor for the Corrosion of Carbon Steel in Vulnerable Corrosive Bacterial Strains, J. Mol. Liq., 261: 473–479 (2018).
         https://doi.org/10.1016/j.molliq.2018.04.045.
        https://doi.org/10.1016/j.molstruc.2020.127819.
[75] Vaithiyanathan S., Chandrasekaran K., Barik R.C., Green Biocide for Mitigating Sulfate-Reducing Bacteria Influenced Microbial Corrosion, 3 Biotech., 8(12): 1-11 (2018).
        https://doi.org/10.1007/s13205-018-1513-7.
        https://doi.org/10.4314/jasem.v21i5.7.
[77] Lekbach Y., Li Z., Xu D., El Abed S., Dong Y., Liu D., Gu T., Koraichi S.I., Yang K., Wang F., Salvia Officinalis Extract Mitigates the Microbiologically Influenced Corrosion of 304L Stainless Steel by Pseudomonas aeruginosa Biofilm, Bioelectrochemistry, 128: 193–203 (2019).
        https://doi.org/10.1016/j.bioelechem.2019.04.006.
[78] Narenkumar J., Sathishkumar K., Sarankumar R.K., Murugan K., Rajasekar A., An Anticorrosive Study on Potential Bioactive Compound Produced by Pseudomonas Aeruginosa TBH2 Against the Biocorrosive Bacterial Biofilm on Copper Metal, J. Mol. Liq., 243: 706–713 (2017).
        https://doi.org/10.1016/j.molliq.2017.08.075.
[79] Lekbach Y., Dong Y., Li Z., Xu D., El Abed S., Yi Y., Li L., Koraichi S. Ibnsouda, Sun T., Wang F., Catechin Hydrate as an Eco-Friendly Biocorrosion Inhibitor for 304L Stainless Steel with Dual-Action Antibacterial Properties Against Pseudomonas Aeruginosa Biofilm, Corros. Sci., 157: 98–108 (2019).
         https://doi.org/10.1016/j.corsci.2019.05.021.
[80] Eduok U., Faye O., Szpunar J., Effect of Benzothiazole Biocide on SRB-Induced Biocorrosion of Hot-Dip Galvanized Steel, Eng. Fail. Anal., 93: 111–121 (2018).
        https://doi.org/10.1016/j.engfailanal.2018.07.008.
[81] Chauhan D.S., Verma C., Quraishi M.A., Molecular Structural Aspects of Organic Corrosion Inhibitors: Experimental and Computational Insights, J. Mol. Struct., 1227: 129374 (2021).
        https://doi.org/10.1016/j.molstruc.2020.129374.
        https://doi.org/10.1039/C8RA10083G.
[83] Solomon M.M., Umoren S.A., Quraishi M.A., Tripathy D.B., Abai E.J., Effect of Akyl Chain Length, Flow, and Temperature on the Corrosion Inhibition of Carbon Steel in a Simulated Acidizing Environment by an Imidazoline-Based Inhibitor,
J. Pet. Sci. Eng. 187: 106801 (2020).
        https://doi.org/10.1016/j.petrol.2019.106801.
[84] Padash R., Rahimi-Nasrabadi M., Shokuhi Rad A., Sobhani-Nasab A., Jesionowski T., Ehrlich H., A Theoretical Study of Two Novel Schiff Bases as Inhibitors of Carbon Steel Corrosion in Acidic Medium, Appl. Phys. A Mater. Sci. Process., 125(2): 1-11 (2019).
        https://doi.org/10.1007/s00339-018-2376-9.
        https://doi.org/10.1016/j.molliq.2020.113874.
[86] Stupnišek-Lisac E., Gazivoda A., Madžarac M., Evaluation of Non-Toxic Corrosion Inhibitors for Copper in Sulphuric Acid, Electrochim. Acta., 47(26): 4189-4194 (2002).
        https://doi.org/10.1016/S0013-4686(02)00436-X.
[87] Popova A., Christov M., Zwetanova A., Effect of the Molecular Structure on the Inhibitor Properties of Azoles on Mild Steel Corrosion in 1 M Hydrochloric Acid, Corros. Sci., 49(5): 2131-2143 (2007).
        https://doi.org/10.1016/j.corsci.2006.10.021.
[88] Srivastava K., Srivastava P., Studies-on Plant Materials as Corrosion Inhibitors, Br. Corros. J., 16(4): 221-223 (1981).
        https://doi.org/10.1179/000705981798274788.
[89] Obi-Egbedi N.O., Obot I.B., El-Khaiary M.I., Umoren S.A., Ebenso E.E., Computational Simulation and Statistical Analysis on the Relationship Between Corrosion Inhibition Efficiency and Molecular Structure of Some Phenanthroline Derivatives on Mild Steel Surface, Int. J. Electrochem. Sci., 6(1): 5649-5675 (2011).
[90] Bereket G., Hür E., Öretir C., Quantum Chemical Studies on Some Imidazole Derivatives as Corrosion Inhibitors for Iron in Acidic Medium, J. Mol. Struct. THEOCHEM, 578(1-3): 79-88 (2002).
        https://doi.org/10.1016/S0166-1280(01)00684-4.
[91] Suhasaria A., Murmu M., Satpati S., Banerjee P., Sukul D., Bis-Benzothiazoles as Efficient Corrosion Inhibitors for Mild Steel in Aqueous HCl: Molecular Structure-Reactivity Correlation Study, J. Mol. Liq., 313: 113537 (2020).
        https://doi.org/10.1016/j.molliq.2020.113537.
       https://doi.org/10.5006/1.3277604.
[93] Barouni K., Bazzi L., Salghi R., Mihit M., Hammouti B., Albourine A., El Issami S., Some Amino Acids as Corrosion Inhibitors for Copper in Nitric Acid Solution, Mater. Lett., 62(19): 3352-3327 (2008).
        https://doi.org/10.1016/j.matlet.2008.02.068.
        https://doi.org/10.1016/j.corsci.2007.10.009.
[95] Quraishi M.A., Rawat J., Ajmal M., Dithiobiurets: A Novel Class of Acid Corrosion Inhibitors for Mild Steel, J. Appl. Electrochem., 30(6): 745-751 (2000).
       https://doi.org/10.1023/A:1004099412974.