Towards Efficient Catalysts via Biomimetic Chemistry for Diphenols and Aminophenols Aerobic Oxidation

Document Type : Review Article


1 Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, MOROCCO

2 Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohamed the 1st University of Oujda, MOROCCO


Biomimetic chemistry is a new environment-friendly approach that is inspired by biological processes, to produce new catalysts, and to develop ‘green’ synthetic routes to chemical catalysts based on the benefits of biological systems, aimed to find sustainable solutions to environmental and economic problems. In this paper, we will begin with overviews of two metalloproteins containing copper, which are catechol oxidase and phenoxazinone synthase; this is followed by analysis, and interpretation of some published results in the literature, concerning several attempts to elaborate new catalysts via biomimetic approach for diphenols and aminophenols aerobic oxidation. In order to save the cost of product development, increase efficiency, and eliminate waste; we have presented a theoretical study named Quantitative Structure–Activity Relationship (QSAR) to predict the catalytic activity and physicochemical properties by rational means, with the aim of contributing to the development of the biomimetic approach, and to increase the efficiency of catalysts, by not following leads that are unlikely to be successful.


Main Subjects

[1] Breslow R., Biomimetic Chemistry: Biology as an Inspiration, Journal of Biological Chemistry, 284: 1337–1342 (2009).
[2] Breslow R., Centenary Lecture. Biomimetic cChemistry, Chemical Society Reviews, 1: 553–580 (1972).
[3] Balkenende D.W.R., Winkler S.M., Messersmith P.B., Marine-Inspired polymers in Medical Adhesion, European Polymer Journal, 116: 134–143 (2019).
[4] Ergene C., Yasuhara K., Palermo E.F., Biomimetic Antimicrobial Polymers: Recent Advances in Molecular Design, Polymer Chemistry, 9: 2407 –2427 (2018).
[5] Padervand M., Rhimi B., Wang C., One-Pot Synthesis of Novel Ternary Fe3N/Fe2O3/C3N4 Photocatalyst for Efficient Removal of Rhodamine B and CO2 Reduction, Journal of Alloys and Compounds, 852: 156955 (2021).
[7] Padervand M., Heidarpour H., Bargahi A., A Mechanistic Study and In-Vivo Toxicity Bioassay on Acetamiprid Photodegradation over the Zeolite Supported Cerium-based Photocatalyst, Journal of Photochemistry and Photobiology A: Chemistry, 395: 112526 (2020).
[8] Padervand M., Lammel G., Bargahi A., Mohammad-Shiri H., Photochemical Degradation of the Environmental Pollutants over the Worm-Like Nd2CuO4-Nd2O3 Nanostructures, Nano-Structures & Nano-Objects, 18: 100258 (2019).
[10] Saleh T.A., Sarı A., Tuzen M., Effective Adsorption of Antimony(III) from Aqueous Solutions by Polyamide-Graphene Composite as a Novel Adsorbent, Chemical Engineering Journal, 307: 230-238 (2017).
[11] Altıntıg E., Altundag H., Tuzen M., Sarri A., Effective Removal of Methylene Blue from Aqueous Solutions using Magnetic Loaded Activated Carbon as Novel Adsorbent, Chemical Engineering Research and Design, 122: 151-163 (2017).
[12] Saleh T.A., Tuzen M., Sarı A., Magnetic Activated Carbon Loaded with Tungsten Oxide Nanoparticles for Aluminum Removal from Waters, Journal of Environmental Chemical Engineering, 5: 2853-2860 (2017).
[13]  González P.J., Rivas M.G., Ferroni F.M., Rizzi A.C., Brondino C.D., Electron Transfer Pathways and Spin–Spin Interactions in Mo- and Cu-Containing Oxidoreductases, Coordination  Chemistry Reviews, 449: 214202 (2021)
[14] Gamez P., Aubel P.G., Driessen W.L., Reedijk J., Homogeneous Bio-Inspired Copper-Catalyzed Oxidation Reactions, Chemical Society Reviews, 30: 376-385 (2001).
[15] Punniyamurthy T., Rout L., Recent Advances in Copper-Catalyzed Oxidation of Organic Compounds, Coordination Chemistry Reviews, 252: 134–154 (2008).
[16] Marion R., Zaarour M., Qachachi N.A., Saleh N.M., Justaud F., Floner D., Lavastre O., Geneste F., Characterization and Catechole Oxidase Activity of a Family of Copper Complexes Coordinated by Tripodal Pyrazole-based Ligands, Journal of Inorganic  Biochemistry, 105: 1391–1397 (2011).
[17] Roy S., Dutta T., Drew M.G.B., Chattopadhyay S., Phenoxazinone Synthase Mimicking Activity of a Dinuclear Copper(II) Complex with a Half Salen Type Schiff base Ligand, Polyhedron, 178: 114311 (2020).
[19] Silva M.P., Saibert C., Bortolotto T., Bortoluzzi A.J., Schenk G., Peraltaa R.A., Terenzi H., Neves A., Dinuclear Copper(II) Complexes with Derivative Triazine Ligands as Biomimetic Models for Catechol Oxidases and Nucleases ,Journal of  Inorganic Biochemistry, 213: 111249 (2020).              
[20] Li X.,  Shi W.,  Cheng Q.,    Huang L.,  Wei M.,  Cheng L., Zeng Q.,  Xu A., Catalytic activation of dioxygen to hydroxyl radical and efficient oxidation of o-aminophenol by cobalt(II) ions in bicarbonate aqueous solution, Applied  Cataysis  A-General, 475: 297–304 (2014).
[21] Bianchini C, Zoellner R.W., Activation of Dioxygen by Cobalt Group Metal Complexes, Advances in Inorganic Chemistry, 44: 263-339 (1996).
[22] Cuff M.E., Miller K.I., Van Holde K.E., Hendrickson W.A., Crystal Structure of a Functional Unit from Octopus Hemocyanin, Journal of Molecular Biology, 278: 855 -870 (1998).
[23] Swerdlow R.D., Ebert R.F., Lee P., Bonaventura C., Miller K.I., Keyhole Limpet Hemocyanin: Structural and Functional Characterization of Two Different Subunits and Multimers, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 11(3): 537–548 (1996).
[24] Germanas J.P., Wang S., Miner A., Hao W., Ready J.M., Discovery of small-molecule inhibitors of tyrosinase, Bioorganic and Medicinal Chemistry Letters, 17: 6871- 6875 (2007).
[25] Tepper A.W.J.W., Bubacco L., Canters G.W., Structural Basis and Mechanism of the Inhibition of the Type-3 Copper Protein Tyrosinase from Streptomyces antibioticus by Halide Ions, Journal of Biological Chemistry, 277: 30436-30444 (2002). 
[26] Eicken C., Krebs B., Sacchettini J.C., Catechol Oxidase — Structure and Activity, Current Opinion in Structural Biology, 9: 677- 683 (1999).
[27] Gerdemann C., Eicken C., Magrini A., Meyer H.E., Rompel A., Spener F., Krebs B.,  Isozymes Of Ipomoea Batatas Catechol Oxidase Diifer in Catalase-Like Activity, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1548: 94-105 (2001).
[28] Adman E.T., Godden J.W., Turley S., The Structure of Copper-nitrite Reductase from Achromobacter Cycloclastes at Five pH Values, with NO2- Bound and with Type II Copper Depleted, Journal of Biological Chemistry, 270: 27458 –27474 (1995).
[29] Perez-Henarejos S.A., Alcaraz L.A., Donaire A., Blue Copper Proteins: A rigid machine for Efficient Electron Transfer, a Flexible Device for Metal Uptake, Archives of Biochemistry and Biophysics, 584: 134-148 (2015).
[31] Elena SalvadeoLionel DuboisJean-Marc Latour, Trinuclear Copper Complexes As Biological Mimics: Ligand Designs And Reactivities, Coordination Chemistry Reviews, 374: 345-375 (2018).
[32] Solomon E.I., Hemming B.L., Root D.E., Electronic Structures of Active Sites in Copper Proteins: Coupled Binuclear and Trinuclear Cluster Sites, Bioinorganic Chemistry of Copper, 3-20 (1993).
[34] Alfieri M.L., Panzella L., Crescenzi O., Alessandra Napolitano A., d’Ischia M., Nature-Inspired Functional Chromophoresfrom Biomimetico-Quinone Chemistry, European Journal of Organic Chemistry, 2021: 2982-2989 (2021).
[35] Qiao H., Sun M., Su Z., Xie Y., Chen M., Li Z., Gao Y., Li H., Qi J., Zhao Q., Gu X., Ping Q., Kidney-Specific Drug Delivery System for Renal Fibrosis Based on Coordination-Driven Assembly of Catechol-Derived Chitosan, Biomaterials, 35: 7157-7171 (2014).
 [36] Quan W.Y., Hu Z., Liu H.Z., Ouyang Q.Q., Zhang D.Y., Li S.D., Li P.W., Yang Z.M., Mussel-Inspired Catechol-Functionalized Hydrogels and Their Medical Applications, Molecules, 24: 2586 (2019).
[37] Zaidi K.U., Ali A.S., Ali S.A., Naaz I., Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry, Biochemistry Research International, 2014: (2014).
[38] Claus H., Decker H., Bacterial tyrosinases, Systematic and Applied Microbiology, 29: 3–14 (2006).
[39] Dicko M.H., Hilhorst R., Gruppen H., Laane C., Van Berkel W.J.H., Voragen A.G.J., Zymography of Monophenolase and O-Diphenolase Activities of Polyphenol Oxidase, Analytical Biochemistry, 306:336-339 (2002).  
[40] Burton S.G., biocatalysis with Polyphenol Oxidase: A Review, Catalysis Today, 22: 459-487 (1994).
[41] Mayer A.M., Harel E., Polyphenol Oxidase in Plants, phytochemistry, 18: 193–215 (1979).
[42] Hyodo H., Uritani I., Properties of Polyphenol Oxidases Produced in Sweet Potato Tissue after Wounding, Archives of Biochemistry and Biophysics, 122: 299-309 (1967).
[43] Tuna M., Yildiz S.Z., Arabaci G., Denli Z., Deliba N.Ç., Hökelekd T., Functional Substituted Cu(II) Schiff base Complexes, Syntheses, X-ray and Theoretical Characterizations, and Investigations of their Polyphenol Oxidase and Peroxidase-Like Activities, Journal of  Molecular Structure, 1232: 129975 (2021).
[44] Belle C., Selmeczi K., Torelli S., Pierre J.L., Chemical tools for mechanistic studies related to catechol oxidase activity, Comptes Rendus Chimie, 10(4-5): 271-283 (2007).
[45] Ording-Wenker E.C.M., Siegler M.A., Lutz M., Bouwman E., Catalytic Catechol Oxidation by Copper Complexes: Development of a Structure-Activity Relationship, Dalton Transactions, 44: 12196–12209 (2015).
 [46] Monzani E., Quinti L., Perotti A., Casella L., Gullotti M., Randaccio L., Geremia S., Nardin G., Faleschini P., Tabbi G., Tyrosinase Models. Synthesis, Structure, Catechol Oxidase Activity, and Phenol Monooxygenase Activity of a Dinuclear Copper Complex Derived from a Triamino Penta benzimidazole Ligand, Inorganic Chemistry, 37: 553–562 (1998).
[47] Terán A., Jaafar A., Sánchez-Peláez A.E., Torralba M.C., Gutiérrez Á., Design and catalytic studies of structural and functional models of the catechol oxidase enzyme, Journal of Biological Inorganic Chemistry, 25: 671–683 (2020).
[48] Joy S.R.U., Trufan E., Smith M.D., Puscas C., Silaghi-Dumitrescu R.L., Semeniuc R.F., An Unexpected μ4-Oxido-Bridged Tetranuclear Cu(II) Inverse Coordination Complex of a Heptadentate bis (Pyrazolyl)Methane-based Ligand: Synthesis, Structure, Spectroscopic Properties, and Catecholase Activity, Inorganica Chimica Acta, 485: 190–199 (2019).
[49] Kundu B.K., Ranjan R., Mukherjee A., Mobin S.M., Mukhopadhyay S., Mannich base Cu(II) COMplexes as Biomimetic Oxidative Catalyst, Journal of Inorganic  Biochemistry,  195: 164–173 (2019).
[50] Ahamad M.N., Iman K., Raza M.K., Kumar M., Ansari A., Ahmad M., Shahid M., Anticancer Properties, Apoptosis and Catecholase Mimic Activities of Dinuclear Cobalt(II) and Copper(II) Schiff base Complexes, Bioorganic Chemistry, 103561: 95 (2020).
[51] Sheoran M., Bhar K., Jain S., Rana M., Khan T.A., Sharma A.K., Phenoxo-Bridged Dicopper Complexes: Syntheses, Characterizations, Crystal Structures and Catecholase Activity, Polyhedron, 161: 169–178 (2019).
[52] Sureshbabu P., Junaid Q.M., Upadhyay C., Victoria W., Pitchavel V., Natarajan S., Sabiah S., Di and Tetranuclear Cu(II) Complexes with Simple 2-Aminoethylpyridine: Magnetic Properties, Phosphodiester Hydrolysis, DNA Binding/Cleavage, Cytotoxicity and Catecholase Activity, Polyhedron,  164: 202–218 (2019).
[53] Das M., Kundu B.K., Tiwari R., Mandal P., Nayak D., Ganguly R., Mukhopadhyay S., Investigation on Chemical Protease, Nuclease and Catecholase Activity of Two Copper Complexes with Flexidentate Schiff base Ligands, Inorganica Chimica Acta, 469: 111–122 (2018).
[54] Pereira M.B., Fontana L.A., Siqueira J.D., Auras B.L., Silva M.P., Neves A., Gabriel P., Terenzi H., Iglesias B.A., Back D.F., Pyridoxalderivatized Copper(II) Complexes: Evaluation of Antioxidant, Catecholase, and DNA Cleavage Activity, Inorganica  Chimica Acta,  469: 561–575 (2018).
[55] Ghosh A.K., Ali A., Singh Y., Purohit C.S., Ghosh R., Synthesis, Structural and Magnetic Characterizations of a Dinuclear Copper(II) Complex with an (N,S,O) Donor Ligand: Catecholase and Phenoxazinone Synthase Activities, Inorganica Chimica  Acta, 474: 156–163 (2018).
[57] Banu K. S., Mukherjee M., Guha A., Bhattacharya S., Zangrando E., Dasm D., Dinuclear Copper(II) Complexes: Solvent Dependent Catecholase Activity, Polyhedron, 45: 245–254 (2012).
[58] Mouadili A., Zerrouki A., Herrag L., Hammouti B., El Kadiri S., Touzani R., Catechol Oxidation: Activity Studies using Electron Rich Nitrogen Based Ligands, Research on  Chemical Intermediates,  38: 2427–2433 (2012).
[59] Mouadili A., Attayibat A., El Kadiri S., Radi S., Touzani R., Catecholase Activity Investigations Using in Situ Copper Complexes with Pyrazole and Pyridine based Ligands, Applied Catalysis. A: General, 454: 93–99 (2013).
[60] Mouadili A., Abrigach F., Khoutoul M., Zarrouk A., Benchat N., Touzani R., Biomimetic Oxidation of Catechol Employing Complexes Formed in-situ with NH-Pyrazole Ligands and Transition Metallic Salts, Journal of Chemical and  Pharmaceutical  Research, 7: 968-979 (2015).
[61] Mouadili A., Lakehal I., Takfaoui A., Halaimia F., Nacer H., Hamlaoui M.L., Hammouti B., Messali M., Touzani R., Air Oxidation of Catechol by in-Situ Copper (II) Complexes with Ligands Containing Benzyl Groups, Journal of Materials and Environmental Science , 5: 715-722 (2014).
[62] Mouadili A., Al-blewi F.F., Rezki N., Messali M., El Ouafi A.,  Touzani R., Biomimetic Catecholase Studies: using in-Situ Prepared Complexes by 1,2,4-triazole Schiff bases and Different Metal Salts, Journal of Materials and Environmental Science, 6: 2392-2399 (2015).
[63] Mouadili A., El Ouafi A., Attayibat A. , Radi S., Touzani R., Catecholase and Tyrosinase Biomimetic Activities for Heteroatom Donor Ligands: Influence of Five Parameters, Journal of Materials and Environmental Scienc, 6(8): 2166-2173 (2015).
[64] Mouadili A., Chtita S., El Ouafi A., Bouachrine M., Zarrouk A., Touzani R., Biomimetic Catecholase Activities by Prepared in-Situ Complexes: Development of a Quantitative Structure–Properties Relationship (QSPR), Journal of Materials and Environmental Scienc, 7: 210-221 (2016).
[65] Barry C.E., Nayar P.G, Begley T.P., Phenoxazinone Synthase: Enzymatic Catalysis of an Aminophenol Oxidative Cascade, Journal of the American Chemical Society, 110: 3333-3334 (1988).
[66] Womer R.B., Paediatric Update: Soft Tissue Sarcomas, European Journal of  Cancer, 33(13): 2230-2236 (1997).
[67] Faber S., Chemotherapy in the Treatment of Leukemia and Wilms' Tumor, JAMA, 198: 826-836 (1966).
[68] Katz E., Weissbach H., Incorporation of C14-labeled Amino Acids into Actinomycin and Protein by Streptomyces Antibioticus, J. Biol. Chem., 237: 666-675 (1963).
[69] Barry C.E., Nayar P.G., Begley T.P., Phenoxazinone Synthase: Mechanism for the Formation of the Phenoxazinone Chromophore of Actinomycin, Biochem. 28: 6323-6333 (1989).
[70] Freeman J.C., Nayar P.G., Begley T.P., Villafranca J.J., Stoichiometry and Spectroscopic Identity of Copper Centers in Phenoxazinone Synthase: A New Addition to the Blue Copper Oxidase Family, Biochem., 32: 4826-4830 (1993).
[71] Smith A.W., Camara-Artigas A., Wang M., Allen J.P., Francisco W.A., Structure of Phenoxazinone Synthase from Streptomyces antibioticus Reveals a New Type 2 Copper Center, Biochem., 45: 4378-4387 (2006).
[72] Sohtun W.P., Muthuramalingam S., Sankaralingam M., VelusamyM., Mayilmurugan R., Copper(II) Complexes of Tripodal Ligand Scaffold (N3O) as Functional Models for Phenoxazinone Synthase, Journal of  Inorganic Biochemistry, 216: 111313 (2021).
[73] Banerjee S., Ghorai P., Sarkar P., Panja A., Saha A., A Rare Flattened Tetrahedral Mn(II) Salen Type Complex: Synthesis, Crystal Structure, Biomimetic Catalysis and DFT Study, Inorganica Chimica Acta, 499: 119176 (2020).
[74] Chatterjee S., Sukul D., Banerjee P., Adhikary J., Phenoxazinone Synthase Activity of Two Iron(III) Complexes Comprising the Same Schiff base Ligand: Biomimetic Functional Model and Mechanistic Investigation, Inorganica  Chimica  Acta, 474: 105-112 (2018).
[76] Maji A.K., Chatterjee A., Khan S., Ghosh B. K., Ghosh R., Synthesis, Crystal Structure, Catecholase and Phenoxazinone Synthase Activities of a Mononuclear Cobalt(III) Complex Containing in Situ Formed Tridentate N-Donor Schiff base, Journal of  Molecular  Structure, 1146: 821-827 (2017).
[78] Kumar S.C., Ghosh A.K., Jhy-Der Chen, Ghosh R., Structurally Characterized Mononuclear Mn(II) Complex: Functional Models for Catecholase and Phenoxazinone Synthase Activities, Inorganica Chimica  Acta464: 49-54 (2017).
[80] Mondal1 D., Ghosh A. K., Chatterjee A., Ghosh R., Synthesis and Structural Characterization of a Dinuclear Copper(II) Complex with a (N,S) Donor Ligand: Catecholase and Phenoxazinone Synthase Activities, Inorganica Chimica Acta, 486: 719-723 (2019).
[81] Sagar S., Sengupta S., Chattopadhyay S.K., Mota A.J., Ferao A.E., Riviere E.,  Lewis W., Naskar S., Cubane-Like Tetranuclear Cu(II) Complexes Bearing a Cu4O4 Core: Crystal Structure, Magnetic Properties, DFT Calculations and Phenoxazinone Synthase Like Activity,  Dalton Transactions, 46(4): 1249-1259 (2016).
[82] Mitra M., Kundu T., Kaur G., Sharma G., Choudhury A. R., Singh Y., Ghosh R., Catecholase and Phenoxazinone Synthase Activities of a Ferromagnetically Coupled Tetranuclear Cu(II) Complex, RSC Advances, 6: 58831-58838 (2016).
[84] O’Brien P.J., Herschlag D., Catalytic Promiscuity and the Evolution of New Enzymatic Activities, Chem. Biol. 6: 91-105 (1999).
[86] Cariati L., Oliverio M., Mutti G., Bonacci S., Knaus T., Costanzo P., Procopio A., Hydrolases-Mediated Transformation of Oleuropein into Demethyloleuropein, Bioorganic Chemistry, 84: 384–388 (2019).
[87] Mondal D., Ghosh A.K., Chatterjee A., Ghosh R., Synthesis and Structural Characterization of a Dinuclear Copper(II) Complex with a (N,S) Donor Ligand: Catecholase and Phenoxazinone Synthase Activities, Inorganica  Chimica  Acta, 486: 719–723 (2019).
[88] Dey K.S., Mukherjee A., Manganese(III) Acetate Mediated Catalytic Oxidation of Substituteddioxolene and Phenols, Journal of Molecular Catalysis A: Chemical, 395: 186-194 (2014).
[90] Kaizer J., Baràth G., Csonka R., Speier G., Korecz L., Rockenbauer A., Pàrkànyi L., Catechol Oxidase and Phenoxazinone Synthase Activity of a Manganese(II) Isoindoline Complex, Journal of Inorganic Biochemistry 102: 773-780 (2008).