Controllable Synthesis and Characterization of Silver Nanoparticles Using Sargassum Angostifolium

Document Type : Research Article


1 Iranian National Institute of Oceanography and Atmospheric Sciences, Tehran, Iran

2 Iranian National Institute of Oceanography and Atmospheric Sciences, Tehran, I.R. IRAN


A simple, fast and one-pot synthesis procedure based on the bioreduction ability of an algal extract solution has been developed to produce silver nanoparticles (AgNPs). We focus especially on the influencing factors of AgNPs formation. The effects of various factors like pH, temperature, the concentration of metal ions and alga, the volume ratio of silver nitrate solution to alga extract, reaction time, mixing order and the mixing rate of the silver nitrate and the alga extract
on the AgNPs synthesis are evaluated. The obtained colloids have been characterized by UV–Vis spectroscopy, TEM, XRD, and FT-IR. TEM image of the silver colloids shows that the AgNPs are predominantly spherical around average particle diameters of 32±10 nm. FT-IR study indicates that the carboxyl (C=O), hydroxyl (OH), and amine (N–H) groups in alga extract are mainly involved in the reduction of Ag+ ions to AgNPs. The XRD spectrum clearly shows that the AgNPs are crystalline in nature. This work may prove to be of great value in synthesizing nanoparticles with well-controlled sizes in chemical, pharmaceutical, and materials production processes.


Main Subjects

[1] Lugli P., Locci S., Erlen C., Csaba G., Challenges and Perspectives, In: Korkin A, Krstic PS, Wells J.C. (ed) “Nanotechnology for Electronics, Photonics, and Renewable Energy Molecular Electronics”, 1st Edition Springer, New York, pp 1-40 (2010).
[2] Karni T.C., Langer R., Kohane D.S., The Smartest Materials: The Future of Nanoelectronics in Medicine, ACS Nano, 6: 6541-6545 (2012).
[3] Zalevsky Z., Mico V., Garcia J., Nanophotonics for Optical Super Resolution from Information Theoretical Perspective: a Review, J. Nanophotonics, 3: 1-18 (2009).
[4] Taylor A., "Nanophotonics: Accessibility and Applicability", The National Academies Press, Washington, (2008). 
[5] Kalidindi S.B., Jagirdar B.R., Nanocatalysis and Prospects of Green Chemistry, Chem. Sus. Chem., 5: 65-75 (2012).
[6] Philippot K., Serp P., Concepts in Nanocatalysis, In: Serp P., Philippot K. (ed) “Nanomaterials in Catalysis”, 1st Edn. Wiley-VCH Verlag, Weinheim, pp 1-54 (2013).
[7] Etheridge M.L., Campbell S.A., Erdman A.G., Haynes C.L., Wolf S.M., McCullough J., The Big Picture on Nanomedicine: the State of Investigational and Approved Nanomedicine Products, Nanomedicine: Nanotechnology, Biology, and Medicine, 9: 1-14 (2013).
[8] Mata A., Palmer L., Tejeda-Montes E., Stupp S.I., Design of Biomolecules for Nanoengineered Biomaterials for Regenerative Medicine. In: Navarro M., Planell J.A. (ed) “Nanotechnology in Regenerative Medicine”, 1st ed. Springer, Humana press, pp 39-49 (2012).
[9] Catauro M., Raucci M.G., De Gaaetano F.D., Marotta A., Sol-Gel Processing of Drug Delivery Materials and Release Kinetics, J. Mater. Sci. Mater. Med., 16: 261-265 (2005).
[10] Krolikowska A., Kudelski A., Michota A., Bukowska J., SERS Studies on the Structure of Thioglycolic Acid Mono-Layers on Silver and Gold, Surf. Sci., 532: 227-232 (2003).
[11] Jiang H., Manolache S.,Wong A.C.L., Denes F.S., Plasma Enhanced Deposition of Silver Nanoparticles onto Polymer and Metal Surfaces for the Generation of Antimicrobial Characteristics, J. Appl. Polym. Sci., 93: 1411-1422 (2004).
[12] Babu S.A., Prabu H.G., Synthesis of AgNPs Using the Extract of Calotropis Procera Àower at Room Temperature, Mater. Lett., 65: 1675-1677 (2011).
[13] Duran N., Marcato P.D., Alves O.L., De Souza G.I.H., Esposito E., Mechanistic Aspects of Biosynthesis of Silver Nanoparticles by Several Fusarium Oxysporum Strains, J. Nanobiotechnol., 3: 8-14 (2005).
[14] Becker R.O., Silver Ions in the Treatment of Local Infections, Met. Based Drugs, 6: 297-300 (1999).
[15] Silver S., Bacterial Silver Resistance: Molecular Biology and Uses and Misuses of Silver Compounds, FEMS Microbiol. Rev., 27: 341-353 (2003).
[16] Tao A., Kim F., Hess C., Goldberger J., He R., Sun Y., Xia Y., Yang P., Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy, Nano Lett., 3: 1229-1233 (2003).
[17] Shiraishi Y., Toshima N., Colloidal Silver Catalysts for Oxidation of Ethylene, Mol. Catal. A Chem., 141: 187-192 (1999).
[18] Nadagouda M.N., Castle A.B., Murdock R.C., Hussain S.M. and Varma R.S., In Vitro Biocompatibility of Nanoscale Zerovalent Iron Particles (NZVI) Synthesized Using Tea Polyphenols, Green Chem., 12: 114-122 (2010).
[19] Jha A.K., Prasad K., Prasad K., A Green Low-Cost Biosynthesis of Sb2O3 Nanoparticles, Biochem. Eng. J., 43: 303-306 (2009).
[20] Bar H., Bhui D.H., Sahoo P.G., Sarkar P., De P.S., Misra A., Green Synthesis of Silver Nanoparticles Using Latex of Jatrapha Curcas, Colloids Surf. A Physico chem.. Eng. Asp., 339: 134-139 (2009).
[21] Govindaraju K., Kiruthiga V., Kumar V.G., Singaravelu G., Extracellular Synthesis of Silver Nanoparticles by a Marine Alga, Sargassum Wightii Grevilli and Their Antibacterial Effects, J. Nanosci. Nanotechnol., 9: 5497-5501 (2009).
[22] Nabikhan A., Kandasamy K., Raj A., Alikunhi A.N., Synthesis of Silver Nanoparticles by Callus and Leaf Extracts from Saltmarsh Plant, Sesuvium Portulacastrum L, Colloids Surf. B, 79: 488-493 (2010).
[23] Venkatpurwar V., Pokharkar V., Green Synthesis of Silver Nanoparticles Using Marine Polysaccharide: Study of in Vitro Antibacterial Activity, Mater. Lett., 65: 999-1002 (2011).
[24] Kannan R.R.R., Arumugam R., Ramya D., Manivannan K., Anantharaman P., Green Synthesis of Silver Nanoparticles Using Marine Macroalga Chaetomorpha Linum, Appl. Nanosci., 3: 229-233 (2013).
[25] Tierney M.S., Croft A.K., Hayes M., A Review of Antihypertensive and Antioxidant Activities in Macroalgae, Bot. Mar., 53: 387-408 (2010).
[26] Hwang P.A., Wu C., Gau S., Chien S.U., Hwang D.F., Antioxidant and Immune- Stimulating Activities of Hot-Water Extracts from Seaweed Sargassum Hemiphyllum, J. Mar. Sci. Tech., 18: 41-46 (2010).
[27] Mulvaney P., Surface Plasmon Spectroscopy of Nanosized Metal Particles, Langmuir, 12: 788-800 (1996).
[28] Jilie K., Shaoning Y.U., Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures, Acta Biochim. Biophys. Sin., 39: 549-559 (2007).
[29] Macdonald I.D.G., Smith W.E., Orientation of Cytochrome C Adsorbed on a Citrate-Reduced Silver Colloid Surface, Langmuir, 12: 706-713 (1996).
[30] Fayaz A.M., Balaji K., Girilal M., Yadav R., Kalaichelvan P.T., Venketesan R., Biogenic Synthesis of Silver Nanoparticles and Their Synergistic Effect with Antibiotics: a Study against Gram-Positive and Gram-Negative Bacteria, Nanomed. Nanotechnol. Biol. Med., 6: 103-109 (2010).
[31] Sathyavathi R., Krishna M.B., Rao S.V., Saritha R., Rao D.N., Biosynthesis of Silver Nanoparticles Using Coriandrum Sativum Leaf Extract and Their Application in Nonlinear Optics, Adv. Sci. Lett., 3: 1-6 (2010).
[32] He B.L., Tan J.J., Kong Y.L., Liu H.F., Synthesis of Size Controlled Ag Nanoparticles, J. Mol. Catal. A: Chem., 221: 121-126 (2004).
[33] Liz-Marz´an L.M., Lado-Touri˜no I., Reduction and Stabilization of Silver Nanoparticles in Ethanol by Nonionic Surfactants, Langmuir, 12: 3585-3589 (1996).
[34] Zhang W., Qiao X., Chen J., Synthesis of Silver Nanoparticles-Effects of Concerned Parameters in Water/Oil Microemulsion, Mater. Sci. Eng. B, 142: 1-15 (2007).
[35] Yakovlev V., Golubeva O.Y., Synthesis Optimization of Lysozyme Monolayer-Coated Silver Nanoparticles in Aqueous Solution, J. Nano Mater., 2014: 1-8 (2014).
[36] Brown K.R., Natan M.J., Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces, Langmuir, 14: 726-728 (1998).
[37] Vanaja M., Gnanajobitha G., Paulkumar K., Rajeshkumar S., Malarkodi C., Annadurai G., Phytosynthesis of Silver Nanoparticles by Cissus Quadrangularis: Influence of Physicochemical Factors, J. Nanostructure Chem., 3:17-24 (2013).
[38] Andreescu D., Eastman C., Balantrapu K., Goia D.V., A Simple Route for Manufacturing Highly Dispersed Silver Nanoparticles, J. Mater. Res., 22: 2488-2496 (2007).