Biochar Produced from Co-Pyrolysis of Olive Pomace & Crude Oil as an Adsorbent for Cr (VI) Removal from Aqueous Solutions

Document Type : Research Article


1 Konya Technical University, Department of Chemical Engineering, Konya, TURKEY

2 İskenderun Technical University, Petrol and Natural Gases Engineering, İskenderun, TURKEY


This study investigated aqueous solution treatment to remove Cr (VI) using a biochar-based adsorbent. Olive pomace and crude oil were used to synthesize the biochar adsorbent via co-pyrolysis for the first time. The biochar properties were examined with Fourier Transform Infra-Red (FT-IR) spectroscopy, scanning electron microscopy (SEM), and Energy Dispersive X-ray (EDX) analyses before and after adsorption. The adsorption experiments were carried out in a batch process under different experimental conditions. The optimum adsorption efficiency was experimentally found to be at pH of 1.5, contact time of 15 min, Cr (VI) initial concentration of 20 mg/L, adsorbent dose of 0.4 g, and 303 K. Langmuir and Freundlich isotherms were used to evaluating the adsorption performance of biochar, and the Langmuir isotherm model was well fitted to experimental data with a maximum adsorption capacity of 9 mg/g. Kinetic experimental data was best described using a pseudo-second-order kinetic model. The thermodynamic parameters of the adsorption process were examined in detail, and the process was exothermic and spontaneous in nature. It is concluded that biochar can be successfully used as an adsorbent for the treatment of Cr (VI) contaminated water. Additionally, the evaluation of olive pomace provided not only a decrease in waste accumulation in the olive production industry but also the synthesis of an inexpensive and environmentally friendly adsorbent. 


Main Subjects

[1] Fu F., Wang Q., Removal of Heavy Metal İons From Wastewaters: A Review, J. Environ. Manag., 92(3): 407-18 (2011).
[2] Gwenzi W., Chaukura N., Organic Contaminants in African Aquatic Systems: Current Knowledge, Health Risks, and Future Research Directions, Sci. Total Environ., 619-620: 1493-514 (2018).
[3] Febrianto J., Kosasih A.N., Sunarso J., Ju Y-H., Indraswati N., Ismadji S., Equilibrium and Kinetic Studies İn Adsorption of Heavy Metals Using Biosorbent: A Summary of Recent Studies, J. Hazard. Mater., 162(2-3):616-45 (2009).
[4] Erdal T.A., Edebali S., Gülcü Ş., Modelling of Removal of Chromium (VI) from Aqueous Solutions Using Artificial Neutral Network, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 163-75 (2020).
[5] Wu Y., Wen Y., Zhou J., Cao J., Jin Y., Wu Y., Comparative and Competitive Adsorption of Cr (VI), As (III), and Ni (II) onto Coconut Charcoal, Environ. Sci. Pollut. Res., 20(4): 2210-2219 (2013).
[6] Ykhlef L., Ghania H., Salah H., Aida F., Study of the Kinetics and Thermodynamics of Adsorption of Hexavalent Chromium on the Luffa Cylindrica Cords, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 137-151 (2020).
[7] Mosca M., Cuomo F., Lopez F., Palumbo G., Bufalo G., Ambrosone L., Adsorbent Properties of Olive Mill Wastes for Chromate Removal, Desalin. Water Treat., 54(1): 275-283 (2015).
[9] Çimen A., Removal of Chromium from Wastewater by Reverse Osmosis, Russ. J. Phys. Chem. A, 89(7): 1238-1243 (2015).
[10] Li Q-H., Dong M., Li R., Cui Y-Q., Xie G-X., Wang X-X., Enhancement of Cr(VI) Removal Efficiency Via Adsorption/Photocatalysis Synergy Using Electrospun Chitosan/g-C3N4/TiO2 Nanofibers, Carbohydr. Polym., 253:117200 (2021).
[12] Huang K., Xiu Y., Zhu H., Selective Removal of Cr (VI) from Aqueous Solution by Adsorption on Mangosteen Peel, Environ. Sci. Pollut. Res., 20(9): 5930-5938 (2013).
[14] Bernardo M., Lapa N., Gonçalves M., Mendes B., Pinto F., Fonseca I., Physico-Chemical Properties of Chars Obtained in the Co-Pyrolysis of Waste Mixtures, J. Hazard. Mater., 219:196-202 (2012).
[17] Jawad A.H., Mohd Firdaus Hum N.N., Abdulhameed A.S., Mohd Ishak MA., Mesoporous Activated Carbon from Grass Waste via H3PO4-activation for Methylene Blue Dye Removal: Modelling, Optimisation, and Mechanism Study, Int. J. Environ. Anal. Chem., (2020).
        DOI: 10.1080/03067319.2020.1807529.
[19] Bardhan M., Novera T.M., Tabassum M., Islam M.A., Jawad A.H., Islam M.A., Adsorption of Methylene Blue onto Betel Nut Husk-Based Activated Carbon Prepared by Sodium Hydroxide Activation Process, Water Sci. Technol., 82(9):1932-1949 (2020).
[20] Deveci H., Kar Y., Adsorption of Hexavalent Chromium from Aqueous Solutions by Bio-Chars Obtained During Biomass Pyrolysis, J. Ind. Eng. Chem., 19(1): 190-196 (2013).
[21] Kaya K., Pehlivan E., Schmidt C., Bahadir M., Use of Modified Wheat Bran for the Removal of Chromium (VI) from Aqueous Solutions, Food Chem., 158:112-117 (2014).
[22] Mohan D., Rajput S., Singh V.K., Steele P.H., Pittman Jr CU., Modeling and Evaluation of Chromium Remediation from Water Using Low Cost Bio-Char, a Green Adsorbent, J. Hazard. Mater., 188(1-3): 319-333 (2011).
[23] Wang C., Gu L., Liu X., Zhang X., Cao L., Hu X., Sorption Behavior of Cr (VI) on Pineapple-Peel-Derived Biochar and the İnfluence of Coexisting Pyrene, Int. Biodeter. Biodegrad., 111: 78-84 (2016).
[24] Martín-Lara M., Pagnanelli F., Mainelli S., Calero M., Toro L., Chemical Treatment of Olive Pomace: Effect on Acid-Basic Properties and Metal Biosorption Capacity, J. Hazard. Mater., 156(1-3):448-457 (2008).
[25] Vegliò F., Beolchini F., Prisciandaro M., Sorption of Copper by Olive Mill Residues, Water Res., 37(20): 4895-4903 (2003).
[26] Pagnanelli F., Toro L., Veglio F., Olive Mill Solid Residues as Heavy Metal Sorbent Material: A Preliminary Study, Waste Manag., 22(8): 901-907 (2002).
[27] Bhatnagar A., Kaczala F., Hogland W., Marques M., Paraskeva C.A., Papadakis V.G., Valorization of Solid Waste Products from Olive Oil İndustry as Potential Adsorbents for Water Pollution Control—A Review, Environ. Sci. Pollut. Res., 21(1): 268-298 (2014).
[28] Şensöz S., Demiral İ., Gerçel H.F., Olive Bagasse (Olea europea L.) Pyrolysis, Bioresour. Technol., 97(3): 429-436 (2006).
[29] Kar Y., Co-Pyrolysis of Walnut Shell and Tar Sand in a Fixed-Bed Reactor, Bioresour. Technol., 102(20): 9800-9805 (2011).
[30] Ahmadi M., Kouhgardi E., Ramavandi B., Physico-Chemical Study of Dew Melon Peel Biochar for Chromium Attenuation from Simulated and Actual Wastewaters, Korean J. Chem. Eng., 33(9): 2589-2601 (2016).
[32] Dong X., Ma LQ., Li Y., Characteristics and Mechanisms of Hexavalent Chromium Removal by Biochar from Sugar Beet Tailing, J. Hazard. Mater., 190(1-3):909-915 (2011).
[33] Wu Y., Cha L., Fan Y., Fang P., Ming Z., Sha H., Activated Biochar Prepared by Pomelo Peel Using H3PO4 for the Adsorption of Hexavalent Chromium: Performance and Mechanism, Water Air Soil Pollut., 228(10) (2017).
[34] Pap S., Bezanovic V., Radonic J., Babic A., Saric S., Adamovic D., Synthesis of Highly-Efficient Functionalized Biochars from Fruit İndustry Waste Biomass for the Removal o Chromium and Lead, J. Molecule Liquid, 268: 315-325 (2018).
[35] Özçimen D., Ersoy-Meriçboyu A., Characterization of Biochar and Bio-Oil Samples Obtained from Carbonization of Various Biomass Materials, Renew. Energy, 35(6): 1319-1324 (2010).
[36] Jawad AH., Rashid RA., Ishak MAM., Ismail K., Adsorptive Removal of Methylene Blue by Chemically Treated Cellulosic Waste Banana (Musa Sapientum) Peels, J. Taibah Uni. Sci., 12(6):809-19 (2018).
[37] Huang X., Liu Y., Liu S., Tan X., Ding Y., Zeng G., Effective Removal of Cr(vi) Using β-cyclodextrin–chitosan Modified Biochars with Adsorption/Reduction Bifuctional Roles, RSC Adv., 6(1): 94-104 (2016).
[38] Gan C., Liu Y., Tan X., Wang S., Zeng G., Zheng B., Effect of Porous Zinc–Biochar Nanocomposites on Cr(vi) Adsorption from Aqueous Solution, RSC Adv., 5(44): 35107-35115 (2015).
[39] Jinhua W., Xiang Z., Bing Z., Yafei Z., Rui Z., Jindun L., Rapid Adsorption of Cr (VI) on Modified Halloysite Nanotubes, Desalin., 259(1-3): 22-28 (2010).
[40] Liu W., Yang L., Xu S., Chen Y., Liu B., Li Z., Efficient Removal of Hexavalent Chromium from Water by an Adsorption–Reduction Mechanism with Sandwiched Nanocomposites, RSC Adv., 8(27): 15087-15093 (2018).
[41] Zimmermann A.C., Mecabo A., Fagundes T., Rodrigues C.A., Adsorption of Cr(VI) Using Fe-Crosslinked Chitosan Complex (Ch-Fe), J. Hazard. Mater., 179(1-3): 192-196 (2010).
[45] Babu BV., Gupta S., Adsorption of Cr(VI) Using Activated Neem Leaves: Kinetic Studies, Adsorp., 14(1): 85-92 (2007).
[46] Mahmoud D.K., Salleh M.A.M., Karim W.A.W.A., Idris A., Abidin Z.Z., Batch Adsorption of Basic Dye Using Acid Treated Kenaf Fibre Char: Equilibrium, Kinetic and Thermodynamic Studies, Chem. Eng. J., 181:449-457 (2012).
[47] Mohammadi N., Khani H., Gupta V.K., Amereh E., Agarwal S., Adsorption Process of Methyl Orange Dye onto Mesoporous Carbon Material–Kinetic and Thermodynamic Studies, J. Colloid Interface Sci., 362(2):457-462 (2011).
[48] Gorzin F., Bahri Rasht Abadi M., Adsorption of Cr (VI) From Aqueous Solution by Adsorbent Prepared from Paper Mill Sludge: Kinetics and Thermodynamics Studies, Adsorp. Sci. Technol., 36(1-2): 149-69 (2018).
[49] Matouq M., Jildeh N., Qtaishat M., Hindiyeh M., Al Syouf M.Q., The Adsorption Kinetics and Modeling for Heavy Metals Removal from Wastewater by Moringa Pods, J. Environ. Chem. Eng., 3(2): 775-784 (2015).
[50] Lan G., Zhang Y., Liu Y., Qiu H., Liu P., Yan J., Modified Peach Stones by Ethylenediamine as a New Adsorbent for Removal of Cr (VI) from Wastewater, Sep. Sci. Technol. 54(13): 2126-2137 (2019).
[51] Li H., Gao P., Cui J., Zhang F., Wang F., Cheng J., Preparation and Cr (VI) Removal Performance of Corncob Activated Carbon, Environ. Sci. Pollut. Res., 25(21): 20743-20755 (2018).
[52] Deepa K.K., Sathishkumar M., Binupriya A.R., Murugesan G.S., Swaminathan K., Yun S.E., Sorption of Cr(VI) from Dilute Solutions and Wastewater by Live and Pretreated Biomass of Aspergillus Flavus, Chemosphere, 62(5): 833-840 (2006).
[53] Baral SS., Das SN., Rath P., Hexavalent Chromium Removal from Aqueous Solution by Adsorption on Treated Sawdust, Biochem. Eng. J., 31(3): 216-222 (2006).
[54] Yang K., Fox J., DPF Soot as an Adsorbent for Cu (II), Cd (II), and Cr (VI) Compared with Commercial Activated Carbon, Environ. Sci. Pollut. Res., 25(9): 8620-8635 (2018).
[56] Bansal M., Garg U., Singh D., Garg V., Removal of Cr (VI) from Aqueous Solutions Using Pre-Consumer Processing Agricultural Waste: A Case Study of Rice Husk, J. Hazard. Mater., 162(1): 312-320 (2009).
[57] Weber T.W., Chakravorti R.K., Pore and Solid Diffusion Models for Fixed‐Bed Adsorbers, AIChE J., 20(2): 228-238 (1974).
[59] Dursun S., Koyuncu SN., Kaya İC., Kaya G.G., Kalem V., Akyildiz H., Production of CuO–WO3 Hybrids and their Dye Removal Capacity/Performance from Wastewater by Adsorption/Photocatalysis, J. Water Process Eng., 36: 101390 (2020).
[60] Pap S., Bezanovic V., Radonic J., Babic A., Saric S., Adamovic D., Synthesis of Highly-Efficient Functionalized Biochars from Fruit İndustry Waste Biomass for the Removal of Chromium and Lead, J. Molecul. Liquid, 268: 315-325 (2018).
[61] Hu X-J., Wang J-S., Liu Y-G., Li X., Zeng G-M., Bao Z-l., Adsorption of Chromium (VI) by Ethylenediamine-Modified Cross-Linked Magnetic Chitosan Resin: İsotherms, Kinetics and Thermodynamics, J. Hazard. Mater., 185(1): 306-314 (2011).
[62] Choudhary B., Paul D., Isotherms, Kinetics and Thermodynamics of Hexavalent Chromium Removal Using Biochar, J. Environ. Chem. Eng., 6(2): 2335-2343 (2018).
[63] Bulut Y., Removal of Heavy Metals from Aqueous Solution by Sawdust Adsorption, J. Environ. Sci., 19(2):160-166 (2007).