Photocatalytic Degradation of Penicillin v Using Bi2O3/Ag/TiO2 Thin Film in a Spinning Disc Photoreactor under Blue LED Illumination

Document Type : Research Article


1 Process Intensification Laboratory, Department of Chemical Engineering, Yasouj University, Yasouj, I.R. IRAN

2 Department of Chemistry, Yasouj University, Yasouj, I.R. IRAN


In this study, a novel Spinning Disc Photo Reactor (SDPR) was designed for the treatment of penicillin v (PV) as objective contaminants under blue Light-Emitting Diodes (LEDs) irradiation. To this end, a visible light-activated Bi2O3/Ag/TiO2 catalyst thin film was deposited onto the surface of ceramic disc support through a facile sol-gel spin coating technique. The synthesized film is fully characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive Spectrometry (EDS), and Diffuse Reflectance Spectroscopy (DRS)techniques. A Central Composite Design (CCD) was exploited to optimize the operative variables including illumination time, rotational speed, initial PV concentration, and solution flow rate. The PV photodegradation efficiency of 97.67% was achieved at optimal operational conditions involving 80 minutes of illumination time, a rotational speed of 180 rpm, an initial PV concentration of 30 mg/L, and a solution flow rate of 0.8 L/min. Furthermore, the Langmuir-Hinshelwood (L–H) kinetic model fitted the empirical data well. Findings indicated that the developed SDPR can be a prominent alternative technology for the PV degradation process from wastewater.


Main Subjects

[2] Zhao C., Pelaez M., Duan X.D., Deng H.P., O’Shea K., Fatta-Kassinos D., Dionysiou D.D., Role of pH on Photolytic and Photocatalytic Degradation of Antibiotic Oxytetracycline in Aqueous Solution Under Visible/Solar Light: Kinetics and Mechanism Studies, Appl. Catal. B, 134-135: 83-92 (2013).
[3] Lai, C. Zhang M., Li B., Huang D., Zeng G., Qin L., Liu X., Yi H., Cheng M., Li L., Chen Z., Chen L., Fabrication of CuS/BiVO4 (0 4 0) Binary Heterojunction Photocatalysts with Enhanced Photocatalytic Activity for Ciprofloxacin Degradation and Mechanism Insight, Chem. Eng. J., 358: 1-18 (2019).
[4] Dimitrakopoulou D., Rethemiotaki I., Frontistis Z., Nikolaos P., Venieri D., Mantzavinos D., Degradation, Mineralization and Antibiotic Inactivation of Amoxicillin by UV-A/TiO2 Photocatalysis, J. Environ. Manage, 98: 168-174 (2012).
[5] Homem V., Santos L., Degradation and Removal Methods of Antibiotics from Aqueous Matrices e a Review, J. Environ. Manage, 92: 2304-2347 (2011).
[6] Klavarioti M., Mantzavinos D., Kassinos D., Removal of Residual Pharmaceuticals from Aqueous Systems by Advanced Oxidation Processes, Environ. Int., 35: 402-417 (2009).
[7] Jiang L., Yuan X., Zeng G., Wu Z., Liang J., Chen X., Leng L., Wang H., Metal-Free Efficient Photocatalyst for Stable Visible-Light Photocatalytic Degradation of Refractory Pollutant, Appl. Catal. B, 221: 715–725 (2018).
[8] Shayegan Z., Lee C.S., Haghighat F., TiO2 Photocatalyst for Removal of Volatile Organic Compounds in Gas Phase – A Review, Chem. Eng. J., 334: 2408-2439 (2018).
[9] Song J., Wang X., Ma J., Wang X., Wang J., Xia S., Zhao J., Removal of Microcystis Aeruginosa and Microcystin-LR Using a Graphitic-C3N4/TiO2 Floating Photocatalyst under Visible Light Irradiation, Chem. Eng. J., 348: 380-388 (2018).
[10] Dosado A.G., Chen W.T., Chan A., Sun-Waterhouse D., Waterhouse G.I.N., Novel Au/TiO2 Photocatalysts for Hydrogen Production in Alcohol–Water Mixtures Based on Hydrogen Titanate Nanotube Precursors, J. Catal., 330: 238-254 (2015).
[12] Sayed M., Arooj A., Shah N.S., Khan J.A., Shah L.A., Rehman F., Arandiyan H., Khan A.M., Khan A.R., Narrowing the Band Gap of TiO2 by Co-Doping with Mn2+ and Co2+ for Efficient Photocatalytic Degradation of Enoxacin and Its Additional Peroxidase Like Activity: A Mechanistic Approach, J. Mol. Liq, 272: 403–412 (2018).
[14] He W.J., Sun Y.J., Jiang G.M., Huang H.W., Zhang X.M., Dong F., Activation of Amorphous Bi2WO6 with Synchronous Bi Metal and Bi2O3 Coupling: Photocatalysis Mechanism and Reaction Pathway, Appl. Catal. B: Environ., 232: 340–347 (2018).
[15] Xu H., Xie J., Jia W., Yu G., Cao Y., The Formation of Visible Light-Driven Ag2O/Ag Photocatalyst with Excellent Property of Photocatalytic Activity and Photocorrosion Inhibition, J. Colloid Interface Sci, 516: 511–521 (2018).
[16] Abdul M., Devadi H., Krishna M., Narasimh H.N., Sathyanarayana M.B.S., Statistical Optimization for Photocatalytic Degradation of Methylene Blue by Ag-TiO2 Nanoparticles, Procedia Materials Science, 5(2014) 612-621.
[18] Mosleh S., Rahimi M.R., Ghaedi M., Dashtian K., Hajati S., Wang S., Ag3PO4/AgBr/Ag-HKUST-1-MOF composites as Novel Blue LED Light Active Photocatalyst for Enhanced Degradation of Ternary Mixture of Dyes in a Rotating Packed Bed Reactor, Chem. Eng. Process, 114: 24-38 (2017).
[21] Subagio D.P., Srinivasan M., Lim M., Lim T.T., Photocatalytic Degradation of Bisphenol-A by Nitrogen-Doped TiO2 Hollow Sphere in a vis-LED Photoreactor, Appl. Catal. B., 95: 414–422 (2010).
[22] Lei P., Wang F., Gao X., Ding Y., Zhang S., Zhao J., Liu S., Yang M., Immobilization of TiO2 Nanoparticles in Polymeric Substrates by Chemical Bonding for Multi-Cycle Photodegradation of Organic Pollutants, J. Hazard. Mater, 227–228: 185–194 (2012).
[23] He T., Ma H., Zhou Z., Xu W., Ren F., Shi Z., Wang J., Preparation of ZnS Fluor Polymer Nano Composites and its Photocatalytic Degradation of Methylene Blue, Polym. Degrad.  Stab., 94: 2251–2256 (2009).
[24] Chahkandi M., Zargazi M., New Water Bbased EPD Thin BiVO4 Film: Effective Photocatalytic Degradation of Amoxicillin Antibiotic, J.  Hazard. Mater,12: 18-50 (2019).
[25] Chen W., Chu M., Gao L., Mao L., Yuan J., Shangguan W., Ni(OH)2 Loaded on TaON for Enhancing Photocatalytic Water Splitting Activity Under Visible Light Irradiation, Appl. Surf. Sci., 324: 432-437 (2015b).
[26] Vereb G., Ambrus Z., Pap Z., Mogyorosi K., Dombi A., Hernadi K., Immobilization of Crystallized Photocatalysts on Ceramic Paper by Titanium (IV) Ethoxide and Photocatalytic Decomposition of Phenol, React. Kinet, Mech, Catal, 113: 293-303 (2014).
[27] Jansson I., Yoshiiri K., Hori H., García-García F.J., Rojas S., Sanchez B., Ohtani B., Suarez S., Visible Light Responsive Zeolite/WO3/Pt Hybrid Photocatalysts for Degradation of Pollutants in Air, Appl. Catal. A, 521: 208-219 (2016).
[29] Xuzhuang Y., Yang D., Huaiyong Z., Jiangwen L., Martins W.N., Frost R., Daniel L., Yuenian S., Mesoporous Structure with Size Controllable Anatase Attached on Silicate Layers for Efficient Photocatalysis, J. Phys. Chem. C, 113: 8243-8248 (2009).
[30] Barati N., Faghihi Sani M.A., Ghasemi H., Sadeghian Z., Mirhoseini S.M.M., Preparation of Uniform TiO2 Nanostructure Film on 316L Stainless Steel by Sol–Gel Dip Coating, Appl. Surf. Sci, 255: 8328–8333 (2009).
[33] Caprariis B., Rita M. Di, Stoller M., Verdone N., Chianese A., Reaction-Precipitation by a Spinning Disc Reactor: Influence of Hydrodynamics on Nanoparticles Production, Chem. Eng. J., 76: 73-80 (2012).
[34] Stephan B., Ludovic L., Dominique W., Modelling of a Falling Thin Film Deposited Photocatalytic Step Reactor for Water Purification: Pesticide Treatment, Chem. Eng. J.,169: 216–225 (2011).
[35] Chong M.N., Jin B., Chow C.W.K., Sol–GelSaint C., Recent Developments in Photocatalytic Water Treatment Technology: A Review, Water. Res, 44: 2997–3027 (2010).
[37] Lu Y., Zhang X., Chu Y., Yu H., Huo M., Qu J., Crittenden J.C., Huo H., X. Yuan, Cu2O Nanocrystals/TiO2 Microspheres Film on a Rotating Disk Containing Long-Afterglow Phosphor for Enhanced Round-the-Clock Photocatalysis, Appl. Catal. B, 224: 239-248 (2018).
[38] Vilardi G., Stoller M., Verdone N., Di Palma L., Production of Nano Zero Valent Iron Particles by Means of a Spinning Disk Reactor, Chem. Eng. Trans, 57: 1865-1859 (2017).