Optimizing the Overall Heat Transfer Coefficient of a Spiral Plate Heat Exchanger Using GAMS

Document Type : Research Article


1 Faculty of Engineering, Instituto Tecnológico Metropolitano, Medellín, COLOMBIA

2 Faculty of Engineering, Institución Universitaria Pascual Bravo, Medellín, COLOMBIA

3 Faculty of Engineering, Universidad Distrital Francisco José de Caldas, Bogotá, COLOMBIA

4 Faculty of Engineering, Universidad Surcolombiana, Neiva, COLOMBIA


Spiral plate heat exchangers should be efficient devices because they are widely employed in the petrochemical and food industries; furthermore, their operation has a direct impact on electricity consumption in such sectors. For those reasons, this article aims to improve the efficiency of heat exchangers by means of optimization techniques. Using as an objective function the maximization of the overall heat transfer coefficient of a spiral plate heat exchanger. The mathematical formulation includes several variables in the problem: width, length, spacing between the plates, and plate thickness. And as a set of constraints the heat duty and the pressure drop, along with technical considerations associated with this type of system. The General Algebraic Modelling System (GAMS) was purposed as a solution method and compared with the Particle Swarm Optimization (PSO) algorithm, a Genetic Algorithm (GA), the original design proposed by Minton, and the Tuned Wind-Driven Optimizer (TWDO). Results show that the purposed method obtains the highest value of objective function being 1.5% better than the best of the used comparison methods with a computing time of 1e-4s, finding a solution with high quality at a low computational cost.


Main Subjects

[1] Cengel Y.A., Boles M.A., "Thermodynamics an Engineering Approach", McGraw Hill, Vol. 53, New York (2013).
[2] Incropera F.P., DeWitt D.P., “Fundamentos de la Transferencia de Calor.”, Prentice Hall, Monterrey (2009).
[3] Bidabadi M., Sadaghiani A.K., Azad A.V., Spiral Heat Exchanger Optimization Using Genetic Algorithm, Sci. Iran., 20(5): 1445–1454 (2013).
[4] Nunez M., Davalos L., Fuentes A., Alternative Design Approach for Spiral Plate Heat Exchangers, Chem. Eng., no. 5: 183–188 (2007).
[5] Khorshidi J., Heidari S., Design and Construction of a Spiral Heat Exchanger, Adv. Chem. Eng. Sci., 6(6):  201–208 (2016).
        doi: 10.4236/aces.2016.62021.
[6] García Sánchez Á., "Técnicas Metaheurísticas", p. 47, Universidad Tecnológica de Pereira (2013).
[7] S. Fettaka, J. Thibault, and Y. Gupta, Design of Shell-and-Tube Heat Exchangers Using Multiobjective Optimization, Int. J. Heat Mass Transf., 60(1): 343–354 (2013).
        doi: 10.1016/j.ijheatmasstransfer.2012.12.047.
[8] Patel V.K., Rao R.V., Design Optimization of Shell-and-Tube Heat Exchanger Using Particle Swarm Optimization Technique, Appl. Therm. Eng., 30(11–12): 1417–1425 (2010).
       doi: 10.1016/j.applthermaleng.2010.03.001.
[9] Segundo E., Mariani V., Coelho L., Spiral Heat Exchanger Optimization Using Wind Driven Algorithm, XII Simpósio Bras. Automação Intel., 1–6 (2015).
[10] Tartibu L.K., Sun B., Kaunda M.A.E., Optimal Design of a Standing Wave Thermoacoustic Refrigerator Using GAMS, Procedia Comput. Sci., 62(Scse): 611–618 (2015).
        doi: 10.1016/j.procs.2015.08.555.
[11] Tartibu L.K., Sun B., Kaunda M.A.E., Multi-Objective Optimization of the Stack of a Thermoacoustic Engine Using GAMS, Appl. Soft Comput. J., 28: 30–43 (2015).
        doi: 10.1016/j.asoc.2014.11.055.
       doi: 10.1016/j.compchemeng.2016.08.014.
[14] Turgut O.E., Çoban M.T., Thermal Design of Spiral Heat Exchangers and Heat Pipes through Global Best Algorithm, Heat Mass Transf. und Stoffuebertragung, 53(3): 899–916 (2017).
        doi: 10.1007/s00231-016-1861-y.
[15] Minton P.E., Designing Heat Exchangers, Chem. Eng., 330 (1970).
[16] E. H. de Vasconcelos Segundo, V. C. Mariani, and L. dos Santos Coelho, Design of Spiral Heat Exchanger From Economic and Thermal Point of View Using a Tuned Wind-Driven Optimizer, J. Brazilian Soc. Mech. Sci. Eng., 40(4): 212 (2018).
        doi: 10.1007/s40430-018-1106-8.
[17] Gali V., Gupta N., Gupta R.A., Enhanced Particle Swarm Optimization Based DC-Link Voltage Control Algorithm for Interleaved SAPF, J. Eng. Sci. Technol., 13(10): 3393–3418, 2018.
[18] Hanafi I., Cabrera F.M., Dimane F., Manzanares J.T., Application of Particle Swarm Optimization for Optimizing the Process Parameters in Turning of PEEK CF30 Composites, Procedia Technol., 22: 195–202, (2016).
        doi: 10.1016/j.protcy.2016.01.044.
[19] Rodriguez-Cabal M.A., Marín J.A., Grisales-Noreña L.F., Montoya O.D., Del Rio J.A.S., Optimization of a Drive Shaft Using PSO Algorithm, WSEAS Trans. Appl. Theor. Mech., 13: 130–139 (2018).
[20] Jafarian F., A Modified Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization of Machining Process, J. Eng. Sci. Technol., 13(12): 4078–4093 (2018).
[21] Park J., Song S., Optimization of a Composite Laminated Structure by Network-Based Genetic Algorithm, KSME Int. J., 16(8): 1033–1038 (2002).
       doi: 10.1007/BF02984012.
[23] Naghiloo A., Abbaspour M., Mohammadi-Ivatloo B., Bakhtari K., GAMS Based Approach for Optimal Design And Sizing of a Pressure Retarded Osmosis Power Plant in Bahmanshir River of Iran, Renew. Sustain. Energy Rev., 52: 1559–1565 (2015).
       doi: 10.1016/j.rser.2015.08.018.
        doi: 10.17230/ingciencia.13.26.2.
[25] Castillo Enrique, Conejo Antonio J., Pedregal Pablo, García Ricardo, Alguacil Natalia "Formulación y Resolución de Modelos de Programación Matemática en Ingenierıa y Ciencia". Universidad de Castilla La Mancha (2002).