Radiation-Induced Degradation of Congo Red Dye over Unsupported and Activated Carbon-Supported Strontium Oxide Nanoparticles

Document Type : Research Article


Department of Chemistry, Bacha Khan University Charsadda, 24420 Khyber Pakhtunkhwa, PAKISTAN


The textile industry produces a significant amount of liquid effluent pollutants due to the vast amounts of water used in fabric processing. This has resulted in significant water pollution worldwide. The reduction of these dye compounds from industrial wastewater has been achieved using chemical, physical, and biological methods. However, these approaches are time-consuming, costly, and pose disposal problems. Currently, photocatalytic degradation by nanoparticles is attracting significant attention.  In this regard, Activated carbon supported and unsupported SrO nanoparticles were synthesized by the wet chemical co-precipitation method. The nanoparticles were characterized by XRD, SEM, EDX, and FT-IR. The Strontium oxide (SrO) and Activated carbon-supported Strontium oxide (Ac/SrO) nanoparticles (NPs) were used as photocatalysts for the photodegradation of Congo red dye in an aqueous medium under UV irradiation. The unsupported SrO and AC/SrO NPs degraded about 93.3% and 97.6% of the dye, respectively, within 100 minutes of irradiation time. The maximum degradation of the dye was achieved at pH 4, 0.06 g of catalyst dose, 15 ppm dye concentration, and a temperature of 45℃. The data were best fitted with pseudo-first-order kinetics. The activity of the recovered catalyst was also examined.


Main Subjects

[1] Zheng B., Guo Q., Wei Y., Deng H., Ma K., Liu J., Zhao Y., Water Source Protection and Industrial Development in the Shandong Peninsula, China from 1995 to 2004: A Case Study, Resour. Consev. Recy., 52(8-9): 1065-1076 (2008).
[2] Nirmaladevi S., Palanisamy P.N., A Comparative Study of the Removal of Cationic and Anionic Dyes from Aqueous Solutions Using Biochar as an Adsorbent, Desalination Water Treat., 175: 282-292 (2020).
[3] Pandey N., Shukla S.K., Singh N.B., Water Purification by Polymer Nanocomposites: An Overview, Nanocomposites., 3(2): 47-66 (2017).
[4] Sakthisharmila P., Palanisamy P.N., Manikandan P., Operational Cost Analysis for the Treatment of Various Textile Effluents by Electrochemical Process Using Stainless Steel and Aluminum Electrodes, Iran. J. Chem. Chem. Eng. (IJCCE), 38(5): 165 - 173 (2019).
[5] Mezohegyi G., van der Zee F. P., Font J, Fortuny A., Fabregat A., Towards Advanced Aqueous Dye Removal Processes: A Short Review on the Versatile Role of Activated Carbon, J. Environ. Manage., 102: 148-164 (2012).
[6] Arslan-Alaton I., Ferry J.L., Application of Polyoxotungstates as Environmental Catalysts: Wet Air Oxidation of Acid Dye Orange II, Dyes. Pigments., 54(1): 25-36 (2002).
[7] Sakthisharmila P.N.P.P., Palanisamy P.N., Manikandan P., Removal of Benzidine Based Textile Dye Using Different Metal Hydroxides Generated in Situ Electrochemical Treatment-A Comparative Study, J. Clean. Prod., 172: 2206-2215 (2018).
[8] Sobana N., Muruganadham M., Swaminathan M., Nano-Ag Particles Doped TiO2 for Efficient Photodegradation of Direct Azo Dyes, J. Mol. Catal. A Chem., 258(1-2): 124-132 (2006).
[9] Vickers N.J., Animal Communication: When I’m Calling You, Will You Answer Too, Curr. Biol., 27(14): 713-715 (2017).
[10] Colvin V. L., Schlamp M. C., Alivisatos A. P., Light-Emitting Diodes Made from Cadmium Selenide Nano Crystals and a Semiconducting Polymer, Nature., 370(6488): 354-357 (1994).
[11] Sanchez-Dominguez M., Boutonnet M., Solans C., A Novel Approach to Metal and Metal Oxide Nanoparticle Synthesis: the Oil-in-Water Microemulsion Reaction Method, J. Nanopart. Res., 11(7): 1823-1828 (2009).
[12] Bodaghi M., Mirhabibi A., Tahriri M., Zolfonoon H., Karimi M., Mechanochemical Assisted Synthesis and Powder Characteristics of Nanostructure Ceramic of α-Al2O3 at Room Temperature, Mater. Sci. Eng B., 162(3): 155-161 (2009).
[13] Johnston G.P., Muenchausen R., Smith D.M., Fahrenholtz W., Foltyn, S., Reactive Laser Ablation Synthesis of Nanosize Alumina Powder, J. Am. Ceram. Soc., 75(12): 3293-3298 (1992).
[14] Rajaeiyan A., Bagheri-Mohagheghi M. M., Comparison of Sol-Gel and Co-Precipitation Methods on the Structural Properties and Phase Transformation of γ and α-Al2O3 Nanoparticles, Adv. Manuf., 1(2): 176-182 (2013).
[15] Nguefack M., Popa A.F., Rossignol S., Kappenstein C., Preparation of Alumina Through a Sol-Gel  Process. Synthesis, Characterization, Thermal Evolution and Model of Intermediate Boehmite, Phys. Chem. Chem. Phys., 5(19): 4279-4289 (2003).
[16] Mishra D., Anand S., Panda R. K., Das R. P., Hydrothermal Preparation and Characterization of Boehmites, Mater. Lett., 42(1-2): 38-45 (2000).
[17] Rahmanpour O., Shariati A., Nikou M. R. K., New Method for Synthesis Nano Size [gamma]- A l2O3 Catalyst for Dehydration of Methanol to Dimethyl Ether, Int. J. Chem. Eng., 3(2): 125-132 (2012).
[18] Zhai X., Fu Y., Chu G., New Technology Reports Combustion Synthesis of the Nano/Structured Alumina Powder, Nanoscience., 11(4): 286-292 (2006).
[19] Saeed K., Khan I., Park S. Y., TiO2/Amidoxime-Modified Polyacrylonitrile Nanofibers and Its Application for the Photodegradation of Methyl Blue in Aqueous Medium, Desalin. Water. Treat., 54(11): 3146-3151 (2015).
[20] Athar T., Synthesis and Characterization of Strontium Oxide Nanoparticles Via Wet Process, Mater. Focus., 2(6): 450-453 (2013).
[21] Tamilisai R, Palanisamy P. N., Review on the Photocatalytic Degradation of Textile Dyes and Antibacterial Activities of Pure and Doped ZnO, Int. J. Innov. Res., 8(3): 15-19 (2018).
[22] Prakash K., Senthil K.P., Latha P., Shanmugam R., Karuthapandian S., Dry Synthesis of Water Lily Flower Like SrO2/g-C3N4 Nanohybrids for the Visible Light Induced Superior Photocatalytic Activity, Materials Research Bulletin, 93: 112-122 (2017).
[24] Yang M. Q., Zhang N. XU YJ., Synthesis of Fullerene-, Carbon Nanotube-, Andgraphene-TiO2 Nanocomposite Photocatalysts for Selective Oxidation: A Comparative Study, ACS Appl. Mater. Interfaces., 5(3): 1156-1164(2013).
[25] Nirmaladevi S., Palanisamy N., Preparation and Adsorptive Properties of Activated Carbon from Acacia Leucophloea Wood Sawdust Hydrochar by Zinc Chloride Activation, Cellul. Chem. Technol., 53(9-10): 1029-1039 (2019).
[27] Matos J., Chovelon J. M., Cordero T., Ferronato C., Influence of Surface Properties of Activated Carbon on Photocatalytic Activity of TiO2 in 4-chlorophenol Degradation, The Open Environ. Eng. J., 2: 21-29 (2009).
[28] Vijayalakshmi S., Anupriya P., Surya P., Vijayalakshmi C., Synthesis and Characterization of Strontia Nanoparticles, Int. J. Pure. Appl. Math., 119(15): 1299-1305 (2018).
[29] Reddy C. V., Babu B., Shim J., Synthesis of Cr-Doped SnO2 Quantum Dots and its Enhanced Photocatalytic Activity, Mater. Sci. Eng. B., 223: 131-142 (2017).
[30] Soltan W. B., Nasri S., Lassoued M. S., Ammar S., Structural, Optical Properties, Impedance Spectroscopy Studies and Electrical Conductivity of SnO2 Nanoparticles Prepared by Polyol Method, J. Mater. Sci-Mater. El., 28(9): 6649-6656 (2017).
[31] Rahman M. M., Hussain M. M., Asiri A. M., A Novel Approach Towards Hydrazine Sensor Development Using SrO· CNT Nanocomposites, RSC Adv., 6(70): 65338-65348 (2016).
[32] Rahman Q. I., Ahmad M., Misra S. K., Lohani M., Effective Photocatalytic Degradation of Rhodamine B Dye by ZnO Nanoparticles, Mater. Lett., 91: 170-174 (2013).
[34] Makwana V. D, Son Y. C., Howell A. R., Suib S. L., The Role of Lattice Oxygen in Selective Benzyl Alcohol Oxidation Using OMS-2 Catalyst: A Kinetic and Isotope-Labeling Study, J. Catal., 210(1): 46-52 (2002).
[35] Begum R., Naseem K., Ahmed E., Sharif A., Farooqi Z. H., Simultaneous Catalytic Reduction of Nitroarenes Using Silver Nanoparticles Fabricated in Poly (N-Isopropylacrylamide-acrylic acid-acrylamide) Microgels, Colloids Surf, A Physicochem Eng Asp., 511: 17-26 (2016).
[36] Farooqi Z. H., Sakhawat T., Khan S. R., Kanwal F., Usman M., Begum R., Synthesis, Characterization and Fabrication of Copper Nanoparticles in N-Isopropylacrylamide Based Co-Polymer Microgels for Degradation of P-Nitrophenol, Mater. Sci.–Poland., 33: 185-192 (2015).
[38] Saeed M., Siddique M., Ibrahim M., Akram N., Usman M., Aleem M.A., Baig A., Calotropis Gigantea Leaves Assisted Biosynthesis of ZnO and Ag@ ZnO Catalysts for Degradation of Rhodamine B Dye in Aqueous Medium, Environ. Prog. Sustain. Energy., 39(4): 13408 (2020).
[39] Siddique M., Fayaz N., Saeed M., Synthesis, Characterization, Photocatalytic Activity and Gas Sensing Properties of Zinc Doped Manganese Oxide Nanoparticles, Physica B: Condensed Matter., 602: 412504 (2021).
[41] Pare B., Sarwan B., Jonnalagadda S. B., The Characteristics and Photocatalytic Activities of BiOCl as Highly Efficient Photocatalyst, J. Mol. Struct., 1007: 196-202 (2012).
[42] Nasser A.M.B., Muzafar A.K., Ioannis S.C, Hak Y K., Influence of Temperature on the Photodegradation Process Using Ag-Doped TiO2 Nanostructures: Negative Impact with the Nanofibers, J. Mol. Catal. A., 366: 333–340. (2013)
[43] Kumar A., Mandal A., Dixit A. R, Das A. K., Performance Evaluation of Al2O3 Nano Powder Mixed Dielectric for Electric Discharge Machining of Inconel 825, Mater. Manuf. Process., 33(9): 986-995 (2018).
[46] Coleman H. M., Vimonses V., Leslie G., Amal R., Degradation of 1, 4-dioxane in Water Using TiO2 Based Photocatalytic and H2O2/UV Processes, J. Hazard. Mater., 146(3): 496-501 (2007).
[47] Cao G., “Nanostructures and Nanomaterials Synthesis, Properties and Applications”, Imperial College Press, London, (2004).
[48] Rahimi R., Kerdari H., Rabbani M., Shafiee M., Synthesis, Characterization and Adsorbing Properties of Hollow Zn-Fe2O4 Nanospheres on Removal of Congo Red from Aqueous Solution, Desalination, 280: 412–418 (2011).
[49] Hu C., Yu J C., Hao Z., Wong P K., Effect of Acidity and Inorganic Ions on the Photocatalytic Degradation of Different Azo Dyes, Appl. catalysis B: Environmental, 46(1): 35-47 (2003).
[50] Kermani M., Kakavandi B., Farzadkia M., Esrafili A., Jokandan S. F., Shahsavani A., Catalytic Ozonation of High Concentrations of Catechol Over TiO2@ Fe3O4 Magnetic Core-Shell Nanocatalyst: Optimization, Toxicity and Degradation Pathway Studies, J. Clean. Prod., 192: 597-607 (2018).
[51] Moosavi S., Li R. Y. M, Lai C. W., Yusof Y., Gan S., Akbarzadeh O., Johan M. R., Methylene Blue Dye Photocatalytic Degradation over Synthesised Fe3O4/AC/TiO2 Nano-Catalyst: Degradation and Reusability Studies, Nanomaterials, 10(12): 2360 (2020).