Morpho-Structural Characterization and Electrophoretic Deposition of Xonotlite Obtained by a Hydrothermal Method

Document Type : Research Article


The University of Niš, Faculty of Sciences and Mathematics, Department of Chemistry, 33 Višegradska St., 18000 Niš, SERBIA


In this research, xonotlite was synthesized by a hydrothermal method in the Si-Ca-Na-H2O system. Detailed structural characterization by using the XRD technique revealed that the obtained material contains a small quantity of wollastonite (up to 3 %) as an impurity. Calcination of the obtained sample at 900 ˚C has resulted in a complete transformation of xonotlite to wollastonite which was detected as only a crystal phase. Crystallite size and lattice strain of all crystal phases were calculated using Scherrer and Williamson-Hall method. SEM observation of xonotlite morphology revealed tiny needle-like crystals joined together forming dendritic or globular aggregates. Optimal conditions for electrophoretic deposition of xonotlite on 304-type stainless steel have been achieved by appropriate selection of electric field strengths, dispersing medium, and dispersants. Stable suspension of the material was obtained using isopropanol containing 1 % water as dispersing medium and Ca-nitrate as a charging additive. Native layers of xonotlite have a very smooth morphology, while after calcination, the appearance of small cracks in the coating can be observed but the adhesion strength of the coatings to the substrate is improved.


Main Subjects

[1] Mamedov K.S., Belov N.V., Structure of Xonotlite Ca6Si6O17(OH)2, Dokl. Akad. Nauk SSSR, 104: 615- 618 (1955).
[2] Mamedov K.S., Belov N.V., Crystal Structure of the Minerals of the Wollastonite Group. I. Structure
of Xonotlite, Zapiski Vserossiiskogo Mineralogicheskogo Obshcesteva, 85: 13-38 (1956).
[3] Black L., Garbev K., Stumm A., Structure, Bonding and Morphology of Hydrothermally Synthesised Xonotlite, Adv. Appl. Ceram., 108(3): 137-144 (2009).
[4] Chen X., Kong H, Wu D., Wang X., Lin Y., Phosphate Removal and Recovery Through Crystallization of Hydroxyapatite Using Xonotlite as Seed Crystal, J. Environ. Sci., 21: 575–580 (2009).
[5] Mitsuda T., Gypsum & Lime, 229: 464 (1990).
[6] Mitsuda T., Gypsum & Lime, 214: 129 (1988).
[7] Cao J., Liu F., Lin Q., Zhang Y., Hydrothermal Synthesis of Xonotlite from Carbide Slag, Prog. Nat. Sci., 18(9): 1147-1153 (2008).
[8] Oguar E., Botti R., Bortolotti M., Colombo P., Vakifahmetoglu C., Synthesis and Additive Manufacturing of Calcium Silicate Hydrate Scaffolds, J. Mater. Res. Techn., 11: 1142-1151 (2021).
[9] Konuklu Y., Ersoy O., Fabrication and Characterization of Form-Stable Phase Change Material/Xonotlite Microcomposites, Sol. Energ. Mater., 168: 130-135 (2017).
[10] Ohtsuki C., Kokubo T., Yamamuro T., Mechanism of Apatite Formation on CaO-SiO2 P2O5 Glasses in a Simulated Body Fluid, J. Non-Cryst. Solids, 143: 84-92 (1992).
[11] Salinas A.J., Vallet-Regi M., Izquierdo-Barba I., Biomimetic Apatite Deposition on Calcium Silicate Gel Glasses, J. Sol-Gel Sci. Techn., 21(1): 13-25 (2001).
[13] Gou Z.R., Chang J., Synthesis and in vitro Bioactivity of Dicalcium Silicate Powders, J. Eur. Ceram. Soc., 24: 93-99 (2004).
[14] Gou Z.R., Chang J., Gao J.H., Wang Z., In vitro Bioactivity and Dissolution of   Ca2(SiO3)(OH)2 and Beta-Ca2SiO4 Fibers, J. Eur. Ceram. Soc., 24: 3491-3497 (2004).
[15] Sarkar P., Nicholson S.P., Electrophoretic Deposition (EPD): Mechanisms, Kinetics and Application to Ceramics, J. Am. Ceram. Soc., 79(8): 1987-2002 (1996).
[16] Chen X., Nouri A., Li Y., Lin J., Hodgson P.D., Wen C., Effect of Surface Roughness of Ti, Zr and TiZr on Apatite Precipitation from Simulated Body Fluid, Biotechnol. Bioeng., 101(2): 378–387 (2008).
[17] Kokubo T., Surface Chemistry of Bioactive Glass-Ceramics, J. Non-Cryst. Solids, 120: 138-151 (1990).
[18] Li P., Ducheyne P., Quasi-Biological Apatite Film Induced by Titanium in a Simulated Body Fluid, J. Biomed. Mater. Res., 41(3): 341–348 (1998).
[19] Kokubo T., Kushitani H., Sakka S., Kitsugi T., Yamamuro T., Solutions Able to Reproduce in vivo Surface-Structure Changes in Bioactive Glass-Ceramics A-W, J. Biomed. Mater. Res. 24(6): 721-734 (1990).
[20] Shunmuga Sundaram P., Sangeetha T., Rajakarthihan S., Vijayalaksmi R., Elangovan A., Arivazhagan G., XRD Structural Studies on Cobalt Doped Zinc Oxide Nanoparticles Synthesized by Coprecipitation Method: Williamson-Hall and Size-Strain Plot Approaches, Physica B, 595: 412342 (2020).
[21] Ferhat D., Nibou D., Mekatel E., Amokrane S., Adsorption of Ni2+ Ions onto NaX and NaY Zeolites: Equilibrium, Kinetic, Intra Crystalline Diffusion and Thermodynamics Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 63-81 (2019).
[22] Ouassel S., Chegrouche S., Nibou D., Melikchi R., Aknoun A., Mellah A., Application of Response Surface Methodology for Uranium(VI) Adsorption Using Hydroxyapatite Prepared from Eggshells Waste Material: Study of Influencing Factors and Mechanism, Water Sci. Technol., 83(5): 1198–1216 (2021).
[24] Frost R.L., Mahendran M., Poologanathan K., Xi Y., Raman Spectroscopic Study of the Mineral Xonotlite Ca6Si6O17(OH)2 – A Component of Plaster Boards, Mater. Res. Bulletin, 47: 3644-3649 (2012).
[25] Frost R.L., López A., Xi Y., Scholz R., A Vibrational Spectroscopic Study of the Silicate Mineral Inesite Ca2(Mn, Fe)7Si10O28(OH)∙5H2O, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128: 207-211 (2014).
[26] Frost R.L., López A., Scholz R., Theiss F.L., Romano A.W., SEM, EDX, Infrared and Raman Spectroscopic Characterization of the Silicate Mineral Yuksporite, Spectrochim. Acta A, 137: 607-611 (2015).
[28] Mostafa Y., Shaltout A.A., Omar H., Abo-El-Enein S.A., Hydrothermal Synthesis And Characterization of Aluminium And Sulfate Substituted 1.1 nm Tobermorites,  J. Alloy. Compd., 467: 332–337 (2009).
[29] Wang S., Peng X., Tang L., Zeng L., Lan C., Influence of Inorganic Admixtures on the 11 Å-Tobermorite Formation Prepared from Steel Slags: XRD and FTIR Analysis, Constr. Build. Mater. 60: 42-47 (2014).
[30] Pantoja-Pertegal J.L., Díaz-Parralejo A., Macías-García A., Sánchez-González J., Cuerda-Correa E.M., Design, Preparation, and Characterization of Yttria-Stabilized Zirconia (YSZ) Coatings Obtained by Electrophoretic Deposition (EPD), Ceram. Int., 47(10): 13312-13321 (2021).