Adsorption of Molybdenum from Wastewater by Surface Altered Agricultural Solid Waste

Document Type : Research Article


1 Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore-641407, INDIA

2 Department of Chemistry, Jansons Institute of Technology, Coimbatore-641659, INDIA

3 Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore-641407, INDIA


The palm fruit husk, an agricultural solid waste does not adsorb Mo(VI). The intent of this endeavor was to estimate the adsorption capacity of the SAPFH towards Mo (VI) in wastewater. Hence the surface was altered using a surface activating group, cetyl trimethyl ammonium bromide (CTAB). The husk of the palm fruit, whose surface was modified, was subjected to evaluate the extent of extracting molybdenum that is present in an aqueous solution. The maximal removal of molybdenum occurs at pH 2.0.  The adsorbent dose necessary for the maximum adsorption of MoO42- was lesser for wastewater than for pure aqueous solutions. MoO42- took a long time to attain equilibrium at high concentrations. The stability results were suited to Langmuir, Freundlich, and Dubinin-Raduskevich adsorption isotherms models. Dynamic investigation revealed that the uptake obeyed pseudo-second-order kinetic effigy. The adsorption of adsorbates did not change significantly with an increase in temperature. Desorption of Mo (VI) showed that it is possible to retrieve Mo (VI) from the spent adsorbent. The influence of accompanying negative ions such as chloride, phosphate, sulfate, and chromate on the Mo (VI) uptake was explored and the anions compete with Mo(VI) ions.


Main Subjects

[1] Rutkowska B., Szulc W., Spychaj-Fabisiak E., Pior N., Prediction of Molybdenum Availability to Plants in Differentiated Soil Conditions, Plant Soil Environ., 63(11): 491-497 (2017).
[2] Fujita T., Dodbiba G., Sadaki J., Shibayama A., Removal of Anionic Metal Ions from wastewater by Hydroxide-Type Adsorbents, Chin. J. Process Eng., (3): 357-362 (2006).
[3] WHO, “Guidelines for Drinking -Water Quality”, 4th ed., World Health Organization, Geneva (2011).
[5] Nägler Th.F., Vögelin A.R., Neubert N., Greber N.D., Villa I.M., “Mo Isotope Fractionation in Surface Processes: An Unwanted Complication (Unpublished).” In: Environmental Isotopes EMI 13. Ascona. 18-23 August (2013).
[6] Verbinnen B., Block C., Lievens P., Brecht A.V., Vandecasteele C., Simultaneous Removal of Molybdenum, Antimony and Selenium Oxynions from Waste water by Adsorption on Supported Magnetite, Waste Biomass Valori., 4: 635-645 (2013).
[7] Chao L., Wang Y., Cao Y.,  Li Y.,  Adsorption of Molybdenum (VI) in Contaminated Water Using Fe3O4/CTS Magnetic Nanoparticles., E3S Web of Conferences, 165, 05032  (2020).
[8] Ting J., Yang-yang J., Shu-juan Y., Ying-ming Q., Zhi-ling J., Yan-hui C., Guo W., Pollution of Molybdenum and Heavy Metals of the Soils and Rice near a Molybdenum Mining Site in Eastern Fujian, Environmental Monitoring in China.,  31(1): 45-49 (2015). (In Chinese)
[9] Kuchekar S.R, Dhage P.M., Aher H.R., Han S.H., Removal of Molybdenum (VI) Using Tamarindous Indica Seeds as a Natural Ion Exchanger, J. Mater.  Environ Sci., 11(12): 2074-2083 (2020).
[10] WHO. “Guidelines for Drinking - Water Quality”, pp.410 (2006).
[11] Orrego P., Jose H., Reyes A., Uranium and Molybdenum Recovery from Copper Leaching Solutions Using Ion Exchange, Hydrometallurgy, 184: 116-122 (2019).
[12] Talla R.G., Gaikwad S.U., Pawar. S.D., Solvent Extraction and Separation of Mo(VI and W(VI) from Hydrochloric Acid Solutions Using Cyanex-923 as ExtractantsIndian J. Chem. Technol., 17(6): 436-440 (2010).
[13] Pradhan D., Kim D.J., Sukla L.B., Pattanaik A., Lee S.W., Evaluation of Molybdenum Recovery from Sulfur Removed Spent Catalyst Using Leaching and Solvent Extraction, Sci. Rep., 10(1): 1-14 (2020).
[15] Sabullah M.K., Rahman M.F., Ahmad S.A., Sulaiman M.R., Shukor M.S.A, Shamaan N.A., Shukor M.Y., Assessing Resistance and Bioremediation Ability of Enterobacter Sp. Strain Saw-1 on Molybdenum in Various Heavy Metals and Pesticides, J. Math. Fundam. Sci, 49(2):193-210 (2017).
[17] Velizarov S., Crespo J.G., Reis M.A., Removal of Inorganic Anions from Drinking Water Supplies by Membrane Bio/Processes, Rev. Environ. Sci. BioTechnol., 3: 361-380 (2004).
[19] Ferreira S.L.C., Andrade H.M.C., dos Santos H.C., Characterization and Determination of the Thermodynamic and Kinetic Properties of the Adsorption of The Molybdenum (VI) - Calmagite Complex onto Active Carbon, J. Coll. Interf. Sci., 270(2):  276-280 (2004).
[20] Xu N., Christodoulatos C., Braida W., Adsorption of Molybdate and Tetrathiomolybdate onto Pyrite and Goethite: Effect of pH and Competitive Anions, Chemosphere, 62: 1726-1735 (2006).
[21] Afkhami A., Norooz-Asl R.., Removal, Preconcentration and Determination of Mo(VI) from Water and Wastewater Samples Using Maghemite Nanoparticles, Colloids Surf., A. Physicochem. Eng. Asp., 346(1-3): 52-57 (2009). 
[23] Pennesi C., Totti C., Beoichini F., Removal of Vanadium (III) and Molybdenum(V) from Wastewater Using Posidonia Oceanic (Tracheophyta) Biomass, PLoS One, 8(10:e76870): 1-11 (2013).
[24] Johansson C.L., Paul N.A., Rocky de Nys., Roberts D.A., Simultaneous Biosorption of Selenium, Arsenic and Molybdenum with Modified Algal – Based Biochars, J. Environ. Manage., 165:117-123 (2016). 
[25] Polowczyk I., Cyganowski P., Bruno F Urbano., Bernabe L Rivas., Bryjak M., Kabay N., Amberlite IRA-400 and IRA-743 Chelating Resins for the Sorption and Recovery of Molybdenum(VI) and Vanadium(V): Equilibrium and Kinetic Studies, Hydrometallurgy, 169: 496-507 (2017).
[27] Denkova A.G., Terpstra B.E., Steinbach O.M., ten Dam J., Wolterbeek H.Th., Adsorption of Molybdenum on Mesoporous Aluminium Oxides for Potential Application In Nuclear Medicine, Sep. Sci. Technol., 48: 1331-1338 (2013).
[29] Sbai S., Elyahyaoui A., Sbai Y., Bentayeb F., Brich M.R., Study of Adsorption Of Molybdate Ion by Alumina, J. Environ. Res. Develop., 11(3): 452-460 (2017).
[32] Brion-Roby R., Gagnon J., Nosrati S., Deschênes J., Chabot B., Adsorption and Desorption of Molybdenum (VI) in Contaminated Water Using a Chitosan Sorbent, J. Water Process. Eng., 23: 13-19 (2018).
[33] Lian J., Yang, M, Wang. S, Chen, B, Zhou F, Liu Z., Treatment of Molybdenum(VI)- Containing Groundwater Using Chitosan Nanoparticle: Adsorption Mechanism and Performances, Desalin. Water Treat., 167: 258-268 (2019).
[34] Lian J., Zhou F., Chen B., Yang M., Wang S., Liu Z., Niu S., Enhanced Adsorption of Molybdenum(VI) onto Drinking Water Treatment Residues Modified by Thermal Treatment and Acid Activation, J. Clean. Prod., 244: 118719 (2020).
[35] Chowdhury Z.Z.,  Zain S. M., Khan R.A., Rafique R.F., Khalid K., Batch and Fixed Bed Adsorption Studies of Lead(II) Cations from Aqueous Solutions onto Granular Activated Carbon Derived From Mangostana Garcinia Shell, Bioresources, 7(3): 2895-2915 (2012a).
[36] Chowdhury Z.Z., Zain S.M., Khan R.A., Islam S. Md., Preparation and Characterizations of Activated Carbon from Kenaf Fiber for Equilibrium Adsorption Studies of Copper from Waste Water, Korean J. Chem. Eng., 29(9): 1187-1195 (2012b).
[37] Sud D., Mahajan G., Kaur M.P., Agricultural Waste Material as Potential Adsorbent for Sequestering Heavy Metal Ions from Aqueous Solutions-A ReviewBioresour. Technol., 99:6017-6027 (2008).
[38] Bermejo-Barrera P., Vazquez-Gonzalez J.F., Pazos-Naveira M.C., Bermejo-Martinez F., Determination of Molybdenum with Gallic Acid and Hydroxylamine,  Analyst., 112(4): 477-479 (1987)
[39] Baird R.B., Eaton A.D., Rice E.W., “Standard Methods for the Examination of Water and Wastewater”, 23rd ed., American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington DC (2017)
[40] Sudhakara P., Reddy K.O., Prasad C.V., Jagadeesh D., Kim H.S., Kim B.S., Bae S.I., Song J.I., Studies on Borassus Fruit Fiber and Its Composites with Polypropylene, Composites Research, 26: 48–53 (2013).
[41] Bingol A., Ucun H., Bayhan Y.K., Karagunduz A., Cakici A., Keskinler B., Removal of Chromate Anions from Aqueous Stream by a Cationic Surfactant-Modified Yeast, Bioresour. Technol., 94: 245-249 (2004).
[42] Krishna B.S., Murty D.S.R., Jaiprakash B.S., Thermodynamics of Chromium (VI) Anionic Species Sorption onto Surfactant-Modified Montmorillonite Clay, J. Coll. Interf. Sci., 229(1): 230-236 (2000).
[43] Arami M., Limaee N.Y., Mahmoodi N.M., Tabrizi N.S., Removal of Dyes from Colored Textile Wastewater by Orange Peel Adsorbent: Equilibrium and Kinetic Studies, J. Coll. Interf. Sci., 288(2): 371-376 (2005).
[44] Kreller D.I., Gibson G., vanLoon G.W., Horton J.H., Chemical Force Microscopy Investigation of Phosphate Adsorption on the Surfaces of Iron(III) Oxyhydroxide Particles, J. Coll. Interf. Sci., 254(2): 205-213 (2002).
[45] Egute N.S., Sousa J.S., Yamaura M., Study on Removal of Molybdenum From Aqueous Solution Using Sugarcane Bagasse ash as Adsorbent, International Nuclear Atlantic Conference. Nuclear Energy: New Jobs for a Better Life-INAC 2011, October 24-28, Belo Horizonte, MG, Brazil (2011).
[46] Gustafsson J.P., Modelling Molybdate and Tungstate Adsorption to Ferrihydrite, Chem. Geol., 200(1-2): 105-115 (2003).
[47] Bostick B.C., Fendorf S., Helz G.R., Differential Adsorption of Molybdate and Tetrathiomolybdate on Pyrite (FeS2), Environ. Sci. Technol., 37(2): 285-291 (2003).
[48] Sulyman M., Namiesnik J., Gierak A., Low-Cost Adsorbents Derived from Agricultural by-Products/Wastes for Enhancing Contaminant Uptakes from Wastewater: A Review, Pol. J. Environ. Stud., 26: 479-510 (2017).
[49] Lagergren S., Zur Theorie Der Sogenannten Adsorption Gelöester Stoffe (in German), Kungliga Svenska Vetenskapsa-Kademiens, Handlingar., 24: 1-39 (1898)
[50]  Blanchard G., Maunaye M., Martin G., Removal of Heavy Metals from Waters by Means of Natural Zeolites, Water Res., 18(12): 1501-1507 (1984).
[51] Ho Y.S., Mckay G., Sorption of Dye from Aqueous Solution by Peat, Chem. Eng. J. 70(2): 115 –124 (1998). 
[52] Yamaura M., Santos J.L., Damasceno M.O., Egute N.S., Moraes A.A.N., Santos B.Z., “Biomass as Biosorbent for Molybdenum Ions”, International Nuclear Atlantic Conference-INAC 2013, November 24-29, Brazil (2013).
[54] Namasivayam C., Sangeetha D., Removal and Recovery of Vanadium (V) by Adsorption onto ZnCl2 Activated Carbon: Kinetics and Isotherms, Adsorption, 12: 103-117 (2006).
[55] Öztürk N., Bektas T. E., Nitrate Removal from Aqueous Solution by Adsorption onto Various Materials, J. Hazard. Mater., 112: 155-162 (2004).
[56] Namasivayam C., Sangeetha D., Application of Coconutcoir Pith for the Removal of Sulphate and Other Anions from Water, Desalination, 219(1-3): 1–13 (2008).
[57] Ganesan P., Kamaraj R., Vasudevan S., Application of Isotherm, Kinetic and Thermodynamic Models for the Adsorption of Nitrate Ions on Graphene from Aqueous Solution, J. Taiwan Inst.  Chem. E., 44(5): 808-814 (2013).
[58] Langmuir I., The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Amer. Chem. Soc., 40(9): 1361-1403 (1918).
[59] Freundlich H.M.F., Uber Die Adsorption in Losungen, Z. Phys. Chem., 57A: 385 (1906).   
[60] Ramachandran J., Vivekanandan S., Lakshmi S., Adsorption Behaviour of N-haloarene Sulphonamidates on Activated Carbon at 303 K, Indian J. Chem., 40A: 115-118 (2001).
[61] McKay G., Otterburn M.S., Sweeney A.G., The Removal of Colour from Effluent Using Various Adsorbents- III. Silica: Rate Processes, Water Res., 14(1): 15-20 (1980).
[62] Özcan A.S., Erdem B., Özcan A., Adsorption of Acid Blue 193 from Aqueous Solutions onto BTMA- BentoniteColloids Surf., A. Physicochem. Eng. Asp., 266(1-3): 73-81 (2005).
[63] Hasany S.M., Saeed M.M., Ahmed M., Sorption of Traces of Silver Ions onto Polyurethane Foam from Acidic Solution, Talanta., 54(1): 89-98 (2001).
[64] Zhao Z., Liu J., Xia W., Cao C., Chen X., Huo G., Chen A., Li H., Removal of Molybdenum from Mnso4 Solution with Freshly Precipitated Nascent Mn3O4, Hydrometallurgy, 99(1-2): 67-71 (2009).