Synthesis and Characterization of a Novel Nanoporous Composite Based on Elemental Sulfur and Graphitic Mesoporous Carbon

Document Type : Research Article


Iranian Institute for Research & Development in Chemical Industries(IRDCI), Academic Center for Education, Culture and Research (ACECR), Karaj, I.R. IRAN


A novel sulfur nanocomposite was fabricated based on graphitic mesoporous carbon.The graphitic mesoporous carbon was synthesized using sucrose as carbon precursor, nano CaCO3 as a hard template and nickel nitrate as graphitization catalyst. The structural properties of the prepared material were characterized using powder X-Ray Diffraction (XRD),
N2-adsorption/desorption and Scanning Electron Microscopy (SEM) techniques. The mesoporous solid with the high surface area of 710 m2/g, average pore size of 2.7 nm and high graphitization degree was applied as the nanoreactor for infiltration of molten sulfur at 150 ºC in an inert gas atmosphere. The properties of prepared nanocomposite were investigated by XRD, BET, SEM and cyclic voltammetry methods. The obtained results showed that the desired nanocomposite with enhanced conductivity successfully was synthesized.


Main Subjects

[1] Cheng X-B., Huang J-Q., Zhang Q., Peng H-J., Zhao M-Q, Wei F., Aligned Carbon Nanotube/Sulfur Composite Cathodes with High Sulfur Content for Lithium-Sulfur Batteries, Nano Energy, 4:65-72 (2014).
[2] Guo J., Xu Y., Wang C., Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium-Sulfur Batteries, Nano. Lett., 11:4288-4294 (2011).
[3] Ma G., Wen Z., Jin J., Lu Y., Rui K., Wu X., Wu M., Zhang J., Enhanced Performance of Lithium Sulfur Battery with Polypyrrole Warped Mesoporous Carbon/Sulfur Composite, J. Power Sources., 254: 353-359 (2014).
[4] Liang X., Wen Z., Liu Y., Zhang H., Huang L., Jin J., Highly Dispersed Sulfur in Ordered Mesoporous Carbon Sphere as A Composite Cathode for Rechargeable Polymer Li/S Battery, J. Power Sources., 196(7): 3655-3658 (2011). 
[5] Sohn H., Gordin M. L., Xu T., Chen S., Lv D., Song J., Manivannan A., D. Wang, Porous Spherical Carbon/Sulfur Nanocomposites by Aerosol Assisted Synthesis: The Effect of Pore Structure and Morphology on Their Electrochemical Performance As Lithium/Sulfur Battery Cathodes, ACS Appl Mater Interfaces., 6(10): 7596-606 (2014).
[6] Fedorková A., Oriňáková R., Čech O., Sedlaříková  M., New Composite Cathode Materials for Li/S Batteries: A Review, Int. J. Electrochem. Sci., 8: 10308-10319 (2013).
[7] Choi H., Zhao X., Kim D-S., Ahn H-J., Kim K-W., Cho K-K., Ahn J-H., A Mesoporous Carbon–Sulfur Composite as Cathode Material for High Rate Lithium Sulfur Batteries, Mater. Res. Bull., 58: 199-203 (2014).
[8] Schuster J., He G., Mandlmeier B., Yim T., Lee K. T., Bein T., Nazar L. F., Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium–Sulfur Batteries, Angew. Chem. Int. Ed., 51: 3591(2012).
[9] Xu T., Song J., Gordin M. L., Sohn H., Yu Z., Chen S., Wang D., Mesoporous Carbon–Carbon Nanotube–Sulfur Composite Microspheres for High-Areal-Capacity Lithium–Sulfur Battery Cathodes, ACS Appl. Mater. Interfaces., 5 (21): 11355–11362 (2013).
[10] Jin J., Wen Z., , Ma G., Lu Y., Rui K., Mesoporous Carbon/Sulfur Composite with Polyaniline Coating for Lithium Sulfur Batteries, Solid State Ionics, 262: 170-173(2014).
[11] Zhang W., Qiao D., Pan J., Cao Y., Yang  H., Ai X., A Li+-Conductive Microporous Carbon-Sulfur Composite for Li-S Batteries, Electrochim. Acta., 87: 497-502 (2013).
[12] Zhang B., Qin X., Li G.R., Gao X.P., Enhancement of Long Stability of Sulfur Cathode by Encapsulating Sulfur Into Micropores of Carbon Spheres, Energy Environ. Sci., 3(10): 1531-1537 (2010).
[13] Do¨rfler S., Hagen M., Althues H., Tu¨bke J., Kaskel S., Hoffmannd M.J., High Capacity Vertical Aligned Carbon Nanotube/Sulfur Composite Cathodes for Lithium–Sulfur Batteries, Chem. Commun., 48(34): 4097-4099 (2012).
[14] Jin K., Zhou X., Zhang L., Xin X., Wang G., Liu Z., Sulfur/Carbon Nanotube Composite Film as a Flexible Cathode for Lithium−Sulfur Batteries, J. Phys. Chem. C, 117(41): 21112−21119 (2013).
[15] Ahn W., Kim K. B., Jung K. N., Shin K. H., Jin C. S., Synthesis and Electrochemical Properties of a Sulfur-Multi Walled Carbon Nanotubes Composite as A Cathode Material for Lithium Sulfur Batteries, J. Power Sources, 202: 394-      (2012).
[16] Yuan Z., Peng H-J., Huang J-Q., Liu X-Y., Wang D-W., Cheng X-B. , Zhang Q., Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for Lithium–Sulfur Batteries, Adv. Funct. Mater., 24(39): 6105-6112 (2014).
[17] Gao X., Li J., Guan D., Yuan C., A Scalable Graphene Sulfur Composite Synthesis for Rechargeable Lithium Batteries with Good Capacity and Excellent Columbic Efficiency, ACS Appl. Mater. Interfaces, 6 (6):4154-4159 (2014).
[18] Zhang Y., Zhao Y. , Bakenov Z., A Novel Lithium/Sulfur Battery Based on Sulfur/Graphene Nanosheet Composite Cathode and Gel Polymer Electrolyte, Nanoscale. Res. Lett. , 9: 137-   (2014).
[19] Jayaprakash N., Shen J., Moganty S. S., Corona A., Archer L. A., Porous Hollow Carbon@Sulfur Composites for High-Power Lithium–Sulfur Batteries, Angewandte. Chemie. International. Edition., 50(26): 5904-5908 (2011).
[21] Zheng J., Yan P., Gu M., Wagner M.J., Hays K. A., Chen J., Li X., Wang C., Zhang J-G., Liu J. , Xiao J., Interfacial Reaction Dependent Performance of Hollow Carbon Nanosphere-Sulfur Composite as a Cathode for Li-S Battery , Front. Energy. Res., 3(25): 1-8 (2015).
[22] Liu L-L, Tian S., Zhu Y-S., Tang W., Li L-L. , Wu Y-P., Nanoporous Carbon as Anode Material of High Rate Capability for Lithium Ion BatteriesJ. Chin. Chem. Soc., 59(10): 1216-1219(2012). 
[23] Srinivasu P., Islam A., Singh S.P., Han L., Kantam  M.L., Bhargava S.K., Highly Efficient Nanoporous Graphitic Carbon with Tunable Textural Properties for Dye-Sensitized Solar Cells, J. Mater. Chem., 39(22): 20866-20869 (2012).
[24] Xia Y., Yang Z., Mokaya R., Templated Nanoscale Porous Carbons, Nanosc., 2: 639–659(2010).
[25] Ma T., Liu L., Yuan Z. Y., Direct Synthesis of Ordered Mesoporous Carbons, Chem. Soc. Rev,. 42(9):3977-4003(2013)
[26] Wu X., Hong X., Luo Z., Hui K.S., Chen H., Wu J., Hui K.N., Li L., Nan J., Zhang Q., The Effects of Surface Modification on the Supercapacitive Behaviors of Novel Mesoporous Carbon Derived from Rod-Like Hydroxyapatite Ttemplate, Electrochim. Acta, 89: 400-406 (2013).
[28] Delahaye E., Escax V, Hassan N. El., Davidson A., Aquino R., Dupuis V., Perzynski R., Raikher YL., Nanocasting: Using SBA-15 Silicas as Hard Templates to Obtain Ultrasmall Monodispersed Gamma-Fe2O3 Nanoparticles, J. Phys .Chem. B., 110(51): 26001-26011 (2006).
[30] Petkovich N.D., Stein A., Controlling Macro- and Mesostructures with Hierarchical Porosity Through Combined Hard and Soft Templating, Chem. Soc. Rev., 42: 3721-3739 (2013).
[32] Sevilla M., Fuertes A. B., Catalytic Graphitization of Templated Mesoporous Carbons, Carbon, 44: 468-474 (2006).
[33] Jiang  L., Yan J.,  Hao L., Xue R., Sun G., Yi B., High Rate Performance Activated Carbons Prepared from Ginkgo Shells for Electrochemical Supercapacitors, Carbon, 56: 146-154 (2013).
[34] Brauner S., Emmet P.H., Teller E., Adsobption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 60: 309–319(1938).
[35] Barrett E.P., Joyner L.G., Halenda P.P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, J. Am. Chem. Soc. 73(1): 373–380(1951).
[36] Zhou G., Wang D-W., Li F., Hou P-X., Yin L., Liu C., Lu G.Q.(M.), Gentlec I.R., Cheng H-M., A Flexible Nanostructured Sulphur–Carbon Nanotube Cathode with High Rate Performance for Li-S Batteries, Energy Environ. Sci., 5: 8901(2012).
[38] Kicinski W., Bystrzejewski Mrummeli M. H., GEemming T, Porous Graphitic Materials Obtained from Carbonization of Organic Xerogels Doped with Transition Metal Salts, Bull. Mater. Sci., 37(1): 141-150 (2014).
[39] Joshi S., Shrestha L. K., Kamachi Y., Malgras V., Pradhananga M. A., Pokhrel B. P., Raja T.N., Pradhananga R. Ariga, K., Yamauchi Y., Synthesis and Characterizations of Nanoporous Carbon Derived from Lapsi (Choerospondias Axillaris) Seed: Effect of Carbonization Conditions, Adv. Powder. Tech., 26(3): 894-900 (2015).