Sulfonated-Titanomagnetite Nanoparticles as Potential and Recyclable Catalyst for the Synthesis of Dihydroquinazoline and Hexahydroquinoline Derivatives under Solvent-Free Condition

Document Type : Research Article


1 Department of Chemistry, Bu-Ali Sina University, Hamedan, I.R. IRAN

2 Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. IRAN


The performance of sulfonated-titanomagnetite nanoparticles (Fe3-xTixO4-SO3H NPs)as useful and recyclable nanocatalyst for the synthesis of dihydroquinazoline and hexahydroquinoline derivatives through multi-component reaction approach in solvent-free condition were investigated extensively. The successful synthesis of mentioned derivatives was confirmed using Fourier-Transform InfraRed (FT-IR) as well as 1H/13C nuclear magnetic resonance (NMR) spectroscopies. According to the results, the employed nanocatalyst has some advantages such as high catalytic activity in short reaction time, good-to-excellent isolated yields in most cases, easy workup process, smooth processing feature of the reactions, facile recovery using an external magnetic field,  and re-usability for four times without significant loss in its activity.


Main Subjects

[1] Azarifar D., Asadpoor R., Badalkhani O., Jaymand M., Tavakoli E., Bazouleh M., Sulfamic‐acid‐Functionalized Fe3‐xTixO4 Nanoparticles as Novel Magnetic Catalyst for the Synthesis of Hexahydroquinolines under Solvent‐Free Condition, ChemistrySelect., 3(48): 13722-13728 (2018).
[2] Yoon, T.J., Lee, W., Oh, Y.S., & Lee, J.K., Magnetic Nanoparticles as a Catalyst Vehicle for Simple and Easy Recycling, New Journal of Chemistry., 27(2): 227-229 (2003).
[3] Lu A.H., Salabas E.E., Schüth F., Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angewandte Chemie International Edition., 46(8): 1222-1244 (2007).
[4] Masteri-Farahani, M., Molybdenum-Schiff Base Complex Immobilized on Magnetite Nanoparticles as a Reusable Epoxidation Catalyst, Iranian Journal of Chemistry and Chemical Engineering., 37(6): 35-42 (2018).
[5] Chang Q., Deng K., Zhu L., Jiang G., Yu C., Tang H., Determination of Hydrogen Peroxide with the Aid of Peroxidase-Like Fe3O4 Magnetic Nanoparticles as the Catalyst, Microchimica Acta., 165(3-4): 299 (2009).
[7] Wang N., Zhu L., Wang D., Wang M., Lin Z., Tang H., Sono-assisted Preparation of Highly-Efficient Peroxidase-like Fe3O4 Magnetic Nanoparticles for Catalytic Removal of Organic Pollutants with H2O2, Ultrasonics Sonochemistry., 17(3): 526-533 (2010). 
[8] Saghatforoush L., Hasanzadeh M., Karim-Nezhad G., Ershad S., Khalilzadeh B., Hajjizadeh M., Kinetic Study of the Electrooxidation of Mefenamic Acid and Indomethacin Catalysed on Cobalt Hydroxide Modified Glassy Carbon Electrode, Bulletin of the Korean Chemical Society, 30(6): 1341-1348 (2009). 
[9] Zare M.R., Azarifar D., Badalkhani O., Jaymand M., Sulfonated magnetic Nanoparticles as Recyclable Catalyst for Facile One-Pot Green Synthesis of 3,4-dihydro-2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione Derivatives, Iran. J. of Chem. and Chem.Eng. (IJCCE), (2019) [in press].
[10] Feng J., Su L., Ma Y., Ren C., Guo Q., Chen X., CuFe2O4 Magnetic Nanoparticles: A Simple and Efficient Catalyst for the Reduction of Nitrophenol, Chemical Engineering Journal., 221:16-24 (2013).
[11] Yamashita A., Uejo F., Yoda T., Uchida T., Tanamura Y., Yamashita T., Teramae N., Self-Assembly of a Silica–Surfactant Nanocomposite in a Porous Alumina Membrane, Nature Materials., 3: 337-341 (2004).
[12]  Claus P., Bruckner A., Mohr C., Hofmeister H., Supported Gold Nanoparticles From Quantum Dot to Mesoscopic Size Scale: Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Groups, Journal of the  American Chemical Society.  122: 11430- 11439 (2000).
[13] Cano R., Yus M., Ramón D.J., First Practical Cross-Alkylation of Primary Alcohols with a New and Recyclable Impregnated Iridium on Magnetite Catalyst, Chemical Communications., 48: 7628-7630 (2012).
[15] Hoffmann M.R., Martin S.T., Choi, W., Bahnemann D.W., Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews., 95: 69-96 (1995)
[16] Kamat P.V., Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces, Chemical Reviews., 93:  267-300 (1993).
[17] Livage J., Henry M., and Sanchez C., Sol-Gel Chemistry of Transition Metal Oxides, Progress in Solid State Chemistry., 18:  259-341 (1988).
[18] Wu, W., He, Q., Jiang, C., Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies, Nanoscale Research Letters., 3(11): 397-    (2008).
[19]  Xiong H.M., Shchukin D.G., Möhwald H., Xu Y., Xia Y.Y., Sonochemical Synthesis of Highly Luminescent Zinc Oxide Nanoparticles Doped with Magnesium (II), Angewandte Chemie International Edition., 48(15): 2727-2731(2009).
[20] Mehendale B., Shende R., Subramanian S., Gangopadhyay S., Redner P., Kapoor D., Nicolich S., Nanoenergetic Composite of Mesoporous Iron Oxide and Aluminum Nanoparticles, Journal of Energetic Materials., 24(4): 341-360 (2006).
[21] Azarifar D., Badalkhani O., Abbasi Y., Amino Acid Ionic Liquidbased Titanomagnetite Nanoparticles: An efficient and Green Nanocatalyst for the Synthesis of 1,4dihydropyrano[2,3‐c]pyrazoles, Journal Applied Organometallic Chemistry. 39(1):3949 (2018).
[22] Ruzmanova I., Stoller M., Chianese A., Photocatalytic Treatment of Olive Mill Waste Water by Magnetic Core Titanium Dioxide Nanoparticles, Chemical Engineering., 32:  2269-2274 (2013).
[23] Azarifar D., Abbasi Y., Jaymand M., Zolfigol M.A., Ghaemi M., Badalkhani O., Fe3-xTixO4-Supported Sulfamic Acid Nanoparticles: New Magnetic Nanocatalyst for the Synthesis of Hexahydroquinolines, Journal of Organometallic Chemistry., 895: 55-63 (2019).
[24] Jiang J.B., Hesson D.P., Dusak B.A., Dexter D.L., Kang G.J., Hamel E.,  Synthesis and Biological Evaluation of 2-styrylquinazolin-4(3H)-ones, a New Class of Antimitotic Anticancer Agents which Inhibit Tubulin PolymerizationJournal of Medicinal Chemistry., 33: 1721–1728 (1990).
[25] Ozaki K., Yamada Y., Oine T., Ishizuka T., Iwasawa Y., Studies on 4(1H)-Quinazolinones, 5: Synthesis and Anti-Inflammatory Activity of 4(1H)-Quinazolinone Derivatives, Journal of Medicinal Chemistry., 28: 568–576 (1985).
[26] Wolfe J.F., Rathman T.L., Sleevi M.C., Campbell J.A., Greenwood T.D., Synthesis and Anticonvulsant Activity of Some New 2-Substituted 3-Aryl-4(3H)-Quinazolinones, Journal of Medicinal Chemistry., 33: 161–166 (1990).
[27] Takaya Y., Tasaka H., Chiba T., Uwai K., Tanitsu M., Kim H., Wataya Y., Miura M., Takeshita M., Oshima Y.,  New Type of Febrifugine Analogues, Bearing a Quinolizidine Moiety, Show Potent Antimalarial Activity Against Plasmodium Malaria Parasite, Journal of Medicinal Chemistry., 42: 3163–3166 (1999).
[28] Bridges A.J., Zhou H., Cody D.R., Rewcastle G.W., McMichael A., Showalter H.D.H., Fry D.W., Kraker A.J., Deny W.A., Tyrosine Kinase Inhibitors, 8: an Unusually Steep Structure_Activity Relationship for Analogues of 4-(3-bromoanilino)-6,7-Dimethoxyquinazoline (PD 153035), A Potent Inhibitor of the Epidermal Growth Factor Receptor, Journal of Medicinal Chemistry., 39:267–276 (1996).
[29] Kurogi Y., Inoue Y., Tsutsumi K., Nakamura S., Nagao K., Yoshitsugu H., Tsuda Y., Synthesis and hypolipidemic Activities of Novel 2-[4-[(diethoxyphosphoryl)methyl]phenyl]quinazolines and 4(3H)-quinazolinones, Journal of Medicinal Chemistry., 39: 1433–1437 (1996).
[30] Sadanadam Y.S., Reddy R.M., Bhaskar A., Synthesis of Substituted 2,3-dihydro-1-(b-phenylethyl)-2-aryl and 2,3-diaryl-4(1H)-quinazolinones and Their Pharmacological Activities, European Journal of Medicinal Chemistry., 22: 169–173 (1987).
[31] Bonola G., Sianesi E., 2,3-Dihydro-4(1H)-Quinazolinone Derivatives, Journal of Medicinal Chemistry., 13: 329–332 (1970).
[32] Memarian H.R., Ebrahimi S., Light-Induced Ooxidation of 2,3-dihydroquinazolin-4(1H)-ones, Journal of Photochemistry and Photobiology A., 271: 8-15 (2013).
[33] Memarian H.R., Ghahremani S., Electron Transfer-Induced Oxidation of 2,3-dihydroquinazolin-4(1H)-ones, Zeitschrift für Naturforschung B., 76: 403-408 (2017).
[34] Abdel-Jalil R.J., Volter W., Saeed M., A Novel Method for the Synthesis of 4(3H) Quinazolinone, Tetrahedron Letter., 45: 3475–3478 (2004).
[35] Wolf J.F., Rathman T.L., Sleevi M.C., Campbell J.A., Greenwood T.D., Synthesis and Anticonvulsant Activity of Some New 2-Substituted 3-Aryl-4(3H)-Quinazolinones, Journal of Medicinal Chemistry., 33: 161–166 (1990).
[36] Padia J.K., Field M., Hinton J., Meecham K., Pablo J., Pinnock R., Roth B.D., Singh L., Suman-Chauhan N., Trivedi B. K., Webdale L., Novel Non-Peptide CCK-B Antagonists: Design and Development of Quinazolinone Derivatives as Potent, Selective, and Orally Active CCK-B Antagonists, Journal of Medicinal Chemistry., 41: 1042–1049 (1998).
[37] Kung, P.P.; Casper, M.D.; Cook, K.L.; Wilson-Lingard, L.; Risen, L.M.; Vickers, T.A.; Ranken, R.; Blyn, L.B.; Wyatt, R.; Cook, P.D.; Ecker, D.J. Structure-Activity Relationship of Novel 2-Substituted Quinazoline Antibacterial AgentsJournal of Medicinal Chemistry., 42: 4705–4713 (1999).
[38] Maskey R.P., Shaaban M., Grun-Wollnu I., Laatsch H., Quinazolin-4-One Derivatives from Streptomyces Isolates, Journal of Natural Products., 67: 1131–1134 (2004).
[39] Semenov V.P., Studenikov A.N., Potekhin A.A., Synthesis of Nitrogen Heterocycles by Means of Nitrenes, Chemistry of Heterocyclic Compounds., 15: 467–483 (1979).
[40] Segarra V., Crespo M.I., Pujol F., Belata J., Domenech T., Miralpeix M., Palacios J.M., Castro A., Martinez A., Phosphodiesterase Inhibitory Properties of Losartan Design and Synthesis of New Lead Compounds, Bioorg. Medicinal Chemistry Letter., 8: 505–510 (1998).
[41] Yu, Y.; Ostresh, J. M.; Houghten, R. A. A Traceless Approach for the Parallel Solid-Phase Synthesis of 2-(arylamino)quinazolinonesJournal of Organic Chemistry., 67: 5831 5834 (2002).
[42] Staiger, R. P.; Moyer, C. L.; Pitcher, G. R. Isatoic Anhydride: Reactions with Isocyanates, Isothiocyanates, and Schiff’s Base, Journal of Chemical Engineering Data., 8: 454–456 (1963).
[43] Kamal A., Ramana K.V., Ankati H.B., Ramana A.V., Mild and Efficient Reduction of Azides to Amines: Synthesis of Fused [2,1-B]Quinazolinones, Tetrahedron Letter., 43: 6861–6863 (2002).
[45] Mansour S.Al-Said, Mostafa M. Ghorab, Mohammed S. Al-Dosari, Mostafa M.Hamed,  Synthesis and in vitro Anticancer Evaluation of Some Novel Hexahydroquinoline Derivatives Having a Benzenesulfonamide Moiety, Europian Journal of Medicinal Chemistry., 46: 201-207 (2011).
[46] Zhang Z. H., Lü H. Y., Yang S. H., Gao J. W., Synthesis of 2,3-dihydroquinazolin-4(1H)-ones by Three-Component Coupling of Isatoic Anhydride, Amines, and Aldehydes Catalyzed by Magnetic Fe3O4 Nanoparticles in Water, Journal of Combinatorial Chemistry., 12: 643–646 (2010).
[47] Maghsoodlou M. T., Khorshidi N., Mousavi, M. R., Hazeri N., Habibi-Khorassani S. M., Starch Solution as an Efficient And Environment-Friendly Catalyst for One-Pot Synthesis of B-Aminoketones and 2,3-Dihydroquinazolin-4(1H)-Ones in EtOH, Research in Chemical Intermediates 41(10): 7497-7508 (2015).
[50] Patil D., Chandam D., Mulik A., Jagdale S., Patil P., Deshmukh M., One-Pot four Component Sequential Synthesis of Hexahydroquinoline Derivatives in Aqueous Media Via Enaminone Intermediates: A Green Protocol, Journal of Saudi Chemical Society., 21: S329-S338 (2017).
[51] Zhang Q., Wei H., Li J., Zhao X., Luo J., One-pot Synthesis of Benzopyrans Catalyzed by Silica Supported Dual Acidic Ionic Liquid Under Solvent-Free Conditions, Heterocycl. Commun., 23(6): 411–414(2017).
[52] Darvatkara N. B., Bhilarea S. V., Deorukhkarb A. R., Rautb D. G., Salunkhec M. M., [bmim]HSO4:An Efficient and Reusable Catalyst for One-Pot Three-Component Synthesis of 2,3-dihydro-4(1H)-Quinazolinones, Green Chem. Lett. Rev., 3(4): 301-306 (2010).
[53] Kumar S., Sharma P., Kapoor K. K., Hundal M. S., An Efficient, Catalyst- and Solvent-Free, Four-Component, and One-Pot Synthesis of Polyhydroquinolines on Grinding, Tetrahedron 64: 536-542 (2008).
[54] Suarez M., Verdecia Y., Ochoa E., Martin N., Martinez R., Quinteriro M., Seoane C., Soto J. L., Novoa H., Blaton N., Peeters O. M., Ranter C. D., Synthesis and Structural Study of Novel 1,4,5,6,7,8-Hexahydroquinolines, J. Heterocyclic Chem., 37: 735 (2000).
[55] Safaei H. M., Shekouhy M., Rahmanpur S., Glycerol as a Biodegradable And Reusable Promoting Medium for the Catalyst-Free One-Pot Three-Component Synthesis of 4H-Pyrans, Green Chem.,  14: 1696–1704 (2012).